
JFormDesigner 5.1 Documentation

- 1 -

JFormDesigner 5.1 Documentation
Version: 5.1

Copyright © 2004-2012 FormDev Software GmbH. All rights reserved.

Contents
1 Introduction .. 2
2 User Interface ... 3

2.1 Menus .. 4
2.2 Toolbars ... 7
2.3 Design View .. 8

2.3.1 Headers .. 10
2.3.2 In-place-editing .. 13
2.3.3 Keyboard Navigation ... 13
2.3.4 Menu Designer ... 13
2.3.5 Button Groups .. 15
2.3.6 JTabbedPane .. 16
2.3.7 Events ... 17

2.4 Palette .. 19
2.5 Structure View ... 22
2.6 Properties View .. 23

2.6.1 Layout Manager Properties ... 25
2.6.2 Layout Constraints Properties ... 25
2.6.3 Client Properties ... 26
2.6.4 Code Generation Properties .. 26
2.6.5 Property Editors .. 28

2.7 Bindings View .. 39
2.8 Error Log View ... 40

3 Localization ... 41
4 Beans Binding (JSR 295) .. 47
5 Projects .. 52
6 Preferences ... 54
7 IDE Integrations .. 72

7.1 Eclipse plug-in ... 73
7.2 NetBeans plug-in .. 77
7.3 IntelliJ IDEA plug-in .. 80
7.4 JBuilder plug-in .. 83

8 Layout Managers ... 86
8.1 BorderLayout ... 88
8.2 BoxLayout ... 89
8.3 CardLayout .. 90
8.4 FlowLayout .. 91
8.5 FormLayout (JGoodies) ... 92

8.5.1 Column/Row Templates ... 93
8.5.2 Column/Row Groups ... 94

8.6 GridBagLayout ... 97
8.7 GridLayout .. 100
8.8 GroupLayout (Free Design) .. 101
8.9 HorizontalLayout (SwingX) ... 105
8.10 IntelliJ IDEA GridLayout ... 106
8.11 null Layout ... 108
8.12 TableLayout ... 110
8.13 VerticalLayout (SwingX) .. 112

9 Java Code Generator .. 113
9.1 Nested Classes ... 114
9.2 Code Templates ... 116

10 Command Line Tool .. 117
11 Runtime Library ... 120
12 JavaBeans ... 122
13 Annotations ... 125
14 JGoodies Forms & Looks .. 127
15 Examples & Redistributables .. 128

JFormDesigner 5.1 Documentation

- 2 -

1 Introduction
JFormDesigner is a professional for Java Swing user interfaces. Its outstanding support forGUI designer

, GroupLayout (), TableLayout and GridBagLayout makes it easy to JGoodies FormLayout Free Design
.create professional looking forms

Why use JFormDesigner?

JFormDesigner makes Swing GUI design a real pleasure. It you spend on decreases the time hand
 forms, giving you to focus on the . You'll find that JFormDesigner coding more time real tasks quickly

 in improved and increased . Evenpays back its cost GUI quality developer productivity
non-programmers can use it, which makes it also ideal for .prototyping

Editions

JFormDesigner is available in five editions: as application and as IDE plug-ins for , stand-alone Eclipse
, and . This documentation covers all editions.NetBeans IntelliJ IDEA JBuilder

If there are functional differences between the editions, then they are marked with: , Stand-alone
, , , or .Eclipse plug-in NetBeans plug-in IntelliJ IDEA plug-in JBuilder plug-in IDE plug-ins

Key features

Easy and intuitive to use, powerful and productive

IDE plug-ins and stand-alone application

GroupLayout (Free Design) support

JGoodies FormLayout and supportTableLayout

Advanced supportGridBagLayout

Column and row headers

Localization support

Beans Binding (JSR 295) support

BeanInfo Annotations

Java code generator or runtime library

Generation of nested classes

JFormDesigner 5.1 Documentation

- 3 -

2 User Interface
This is the main window of JFormDesigner edition:stand-alone

The main window consists of the following areas:

Main Menu: Located at the top of the window.

Toolbar: Located below the main menu.

Palette: Located at the left side of the window.

Design View: Located at the center of the window.

Structure View: Located at the upper right of the window.

Properties View: Located at the lower right of the window.

Bindings View: Located below the Design view. This view is not visible by default. Click the Show
 button () in the toolbar to make is visible.Bindings View

Error Log View: Located below the Design view. This view is not visible in the above screenshot.

JFormDesigner 5.1 Documentation

- 4 -

2.1 Menus
You can invoke most commands from the main menu (at the top of the main frame) and the various
context (right-click) menus.

Main Menu

The main menu is displayed at the top of the JFormDesigner main window of the edition.stand-alone

File menu

New Project Creates a new project.

Open Project Opens an existing project.

Reopen Project Displays a submenu of previously opened projects. Select a project to open it.

Project Properties Displays the project properties.

Close Project Closes the active project.

New Form Creates a new form.

Open Form Opens an existing form.

Reopen Form Displays a submenu of previously opened forms. Select a form to open it.

Close Closes the active form.

Close All Closes all open forms.

Save Saves the active form and generates the Java source code for the form (if Java Code
Generation is enabled in the).Preferences

Save As Saves the active form under another file name or location and generates the Java source
code for the form (if Java Code Generation is enabled in the).Preferences

Save All Saves all open forms and generates the Java source code for the forms (if Java Code
Generation is enabled in the).Preferences

Import Imports NetBeans, IntelliJ IDEA or Abeille form files and creates new JFormDesigner
forms. Use to save the new form in the same folder as the original form file.File > Save
This also updates the .java file.

Exit Exits JFormDesigner. : this item is in the JFormDesigner application menu.Mac

Edit menu

Undo Reverses your most recent editing action.

Redo Re-applies the editing action that has most recently been reversed by the Undo action.

Cut Cuts the selected components to the clipboard.

Copy Copies the selected components to the clipboard.

Paste Pastes the components in the clipboard to the selected container of the active form.

Rename Renames the selected component.

Delete Deletes the selected components.

JFormDesigner 5.1 Documentation

- 5 -

View menu

Show Diagonals Shows diagonals.

Squint Test Simulates evaluating a graphic layout by squinting your eyes. This tests legibility and
whether the overall layout is a strong, clear layout. You can change the squint intensity
in the .Preferences

Refresh Designer Refresh the view of the active form. Reloads all classes used by the form andDesign
recreates the form preview shown in the view. You can use this command, if youDesign
changed the code of a component used in the form to reload the component classes. But
usually this is not necessary because JFormDesigner automatically reloads component
classes.

Form menu

Test Form Tests the active form. Creates live instances of the form in a new window. You can close
that window by pressing the key when the window has the focus. If your formEsc
contains more than one top-level component, use the drop-down menu in the toolbar to
test another component.

Localize Edit settings, resource bundle strings, create new locales or delete locales.localization

New Locale Creates a new locale.

Delete Locale Deletes an existing locale.

Externalize Strings Moves strings to a resource bundle for localization. Use this command to start localizing
existing forms.

Internalize Strings Moves strings from a resource bundle into the form and remove the strings from the
resource bundle.

Generate Java Code Generates the Java code for the active form. Usually it's not necessary to use this
command because when you save a form, the Java code will be also generated.

Window menu

Activate Designer Activates the view.Design

Activate Structure Activates the view.Structure

Activate Properties Activates the view.Properties

Activate Bindings Activates the view. By default, the Bindings view is not visible.Bindings

Activate Error Log Activates the view. By default, the Error Log view is not visible. ItError Log
automatically appears if an error occurs.

Next Form Activates the next form.

Previous Form Activates the previous form.

Preferences Opens the dialog. : this item is in the JFormDesigner application menu.Preferences Mac

Help menu

Help Contents Displays help topics.

What's New Displays what's new in the current release.

Tip of the Day Displays a list of interesting productivity features.

Register Activates your license.

License Displays information about your license.

Check for Updates Checks whether a newer version of JFormDesigner is available.

About Displays information about JFormDesigner and the system properties. : this item isMac
in the JFormDesigner application menu.

JFormDesigner 5.1 Documentation

- 6 -

Context menus

Context menus appear when you're right-click on a particular component or control.

Design view context menu: Properties view context menu:

JFormDesigner 5.1 Documentation

- 7 -

2.2 Toolbars
Toolbars provides shortcuts to often used commands.

Main Toolbar

This is the toolbar of JFormDesigner edition. Many of the commands are also used in thestand-alone
toolbars of the .IDE plug-ins

New Project Creates a new project.

Open Project Opens an existing project.

Project Properties Displays the project properties.

New Form Creates a new form.

Open Form Opens an existing form.

Save Saves the active form and generates the Java source code for the form (if Java Code
Generation is enabled in the).Preferences

Save All Saves all open forms and generates the Java source code for the forms (if Java Code
Generation is enabled in the).Preferences

Undo Reverses your most recent editing action.

Redo Re-applies the editing action that has most recently been reversed by the Undo action.

Cut Cuts the selected components to the clipboard.

Copy Copies the selected components to the clipboard.

Paste Pastes the components in the clipboard to the selected container of the active form.

Delete Deletes the selected components.

Test Form Tests the active form. Creates live instances of the form in a new window. You can close
that window by pressing the key when the window has the focus. If your formEsc
contains more than one top-level component, use the drop-down menu to test another
component.

Allows you to change the look and feel of the components in the view. You canDesign
add other look and feels in the .Preferences

Show Diagonals Shows diagonals.

Squint Test Simulates evaluating a graphic layout by squinting your eyes. This tests legibility and
whether the overall layout is a strong, clear layout. You can change the squint intensity
in the .Preferences

Refresh Designer Refresh the view of the active form. Reloads all classes used by the form andDesign
recreates the form preview shown in the view. You can use this command, if youDesign
changed the code of a component used in the form to reload the component classes. But
usually this is not necessary because JFormDesigner automatically reloads component
classes.

Allows you to change the locale of the form in the view. "(no locale)" is show ifDesign
the form is not localized. Use to start localizing a form.Form > Externalize Strings

Localize Edit settings, resource bundle strings, create new locales or delete locales.localization

Show Bindings View Shows the view.Bindings

Generate Java Code Generates the Java code for the active form. Usually it's not necessary to use this
command because when you save a form, the Java code will be also generated.

Help Contents Displays help topics.

JFormDesigner 5.1 Documentation

- 8 -

2.3 Design View
This view is the central part of JFormDesigner. It displays the opened forms and lets you edit forms.

Stand-alone: At top of the view, tabs are displayed for each open form. Click on a tab to activate a
form. To close a form, click the symbol that appears on the right side of a tab if the mouse is over it.
An asterisk (*) in front of the form name indicates that the form has been changed.

IDE plug-ins: The Design view is integrated into the IDEs, which have its own tabs.

On the top and left sides of the view, you can see the column and row . These are importantheaders
controls for grid-based layout managers. Use them to insert, delete or move columns/rows and change
column/row properties.

In the center is the design area. It displays the form, grids and handles. You can drag and drop
components, resize, rename, delete components or in-place-edit labels.

Selecting components

To select a single component, click on it. To select multiple components, hold down the (: Ctrl Mac
) or key and click on the components. To select the parent of a selected component,Command Shift

hold down the key (: key) and click on the selected component.Alt Mac Option

To select components in a rectangular area, select in the and click-and-dragMarquee Selection Palette
a rectangular selection area in the Design view. Or click-and-drag on the free area in the Design view. All
components that lie partially within the selection rectangle are selected.

The selection in the Design view and in the view is synchronized both ways.Structure

Drag feedback

JFormDesigner provides four types of drag feedback.

JFormDesigner 5.1 Documentation

- 9 -

The figure shows the outline of the dragged components. It always follows the mouse location. The gray
 figure indicates the drop location, the figure indicates a new column/row and figuresgreen yellow red

indicate occupied areas.

Cursor feedback

JFormDesigner uses various cursors while dragging components:

The dragged components will be moved to the new location.

Either add a new component to the form or copy existing components.

Add multiple components of the same type to the form.

It is not possible to drop the component at this location.

Add components

To add components, choose a component from the and drop it to the location where you want toPalette
add it.

To add multiple instances of a component, hold down the key (: key) while clickingCtrl Mac Command
on the Design view.

Move or copy components

To move components simply drag them to the new location. You will get reasonable visual feedback
during the drag operation.

To copy components, proceed just as moving components, but hold down the key (: Ctrl Mac Option
key) before dropping the components.

You can cancel all drag operations using the key.Esc

Resize components

Use the selection handles to resize components. Click on a handle and drag it.

The green feedback figure indicates the new size of the component. The tool tip provides additional
information about location, size and differences.

Whether a component is resizable or not depends on the used .layout manager

JFormDesigner 5.1 Documentation

- 10 -

Morph components

The "Morph Bean" command allows you to change the class of existing components without loosing
properties, events or layout information. Right-click on a component in the or view andDesign Structure
select from the popup menu.Morph Bean

Nest in Container

The "Nest in Container" command allows you to nest selected components in a new container (usually a
JPanel). Right-click on a component in the or view and select from theDesign Structure Nest in JPanel
popup menu. The new container gets the same as the old container and is placed at thelayout manager
same location where the selected components were located. For grid-based layout managers, the new
container gets columns and rows and the of the selected components are preserved.layout constraints

Non-visual beans

To add a non-visual bean to a form, select it in the (or use) and drop it into thePalette Choose Bean
free area of the Design view. Non-visual beans are shown in the Design view using proxy components.

Red beans

If a bean could not instantiated (class not found, exception in constructor, etc), a will be shownred bean
in the designer view as placeholder.

To fix such problems, take a look at the view and if necessary add required jars to the Error Log
 of your project.classpath

2.3.1 Headers

The column and row headers (for grid-based layout managers) show the structure of the layout. This
includes column/row indices, alignment, growing and grouping.

Use them to insert, delete or move columns/rows and change column/row properties. Right-clicking on a
column/row displays a popup menu. Double-clicking shows a dialog that allows you to edit the
column/row properties.

JFormDesigner 5.1 Documentation

- 11 -

If a column width or row height is zero, which is the case if a column/row is empty,
then JFormDesigner uses a minimum column width and row height. Columns/rows
having a minimum size are marked with a light-red background in the column/row
header.

Selecting columns/rows

You can select more than one column/row. Hold down the key (: key) and click onCtrl Mac Command
another column/row to add it to the selection. Hold down the key to select the columns/rowsShift
between the last selected and the clicked column/row.

Insert column/row

Right-click on the column/row where you want to insert a new one and select / Insert Column Insert
 from the popup menu. The new column/row will be inserted the right-clicked column/row. ToRow before

add a column/row the last one, right-click on the area behind the last column/row.after

If the layout manager is , an additional gap column/row will be added. Hold down the FormLayout Shift
key before selecting the command from the popup menu to avoid this.

Besides using the popup menu, you can insert new columns/row when dropping components on
column/row gaps or outside of the existing grid. In the first figure, a new row will be inserted between
existing rows. In the second figure, a virtual grid is shown below/right to the existing grid and a new row
will be added.

Delete columns/rows

Right-click on the column/row that you want delete and select / from theDelete Column Delete Row
popup menu.

If the layout manager is , an existing gap column/row beside the removed column/row willFormLayout
also be removed. Hold down the key before selecting the command from the popup menu to avoidShift
this.

Split columns/rows

Right-click on the column/row that you want split and select / from the popupSplit Column Split Row
menu.

If the layout manager is , an additional gap column/row will be added. Hold down the FormLayout Shift
key before selecting the command from the popup menu to avoid this.

JFormDesigner 5.1 Documentation

- 12 -

Move columns/rows

The headers allow you to drag and drop columns/rows (incl. contained components and gaps). This
allows you to swap columns or move rows in seconds. Click on a column or row and drag it to the new
location. JFormDesigner updates the column/row specification and the locations of the moved
components.

If the layout manager is , then existing gap columns/rows are also moved. Hold down the FormLayout
 key before dropping a column/row to avoid this.Shift

Resize columns/rows

To change the (minimum) size of a column/row, click near the right edge of a column/row and drag it.

FormLayout supports minimum and constant column/row sizes. Hold down the key to change theCtrl
minimum size. supports only constant sizes and supports only minimumTableLayout GridBagLayout
sizes.

Header symbols

Following symbols are used in the headers:

Column Header

Left aligns components in the column.

Right aligns components in the column.

Center components in the column.

Fill (expand) components into the column.

Grow column width.

Group column with other columns. All columns in a group will get the same width.

Row Header

Top aligns components in the row.

Bottom aligns components in the row.

Center components in the row.

Fill (expand) components into the row.

Baseline aligns components in the row.

Aligns components above baseline in the row.

Aligns components below baseline in the row.

JFormDesigner 5.1 Documentation

- 13 -

Grow row height.

Group row with other rows. All rows in a group will get the same height.

2.3.2 In-place-editing

In-place-editing allows you to edit the text of labels and other components directly in the view.Design
Simply select a component and start typing. JFormDesigner automatically displays a text field that allows
you to edit the text.

You can also use the key or double-click on a component to start in-place-editing. Confirm yourSpace
changes using the key, or cancel editing using the key.Enter Esc

In-place-editing is available for all components, which support one of the properties , textWithMnemonic
 or .text title

In-place-editing is also supported for the title of and the tab titles of .TitledBorder JTabbedPane

TitledBorder: double-click on the title of the ; or select the component with the TitledBorder
 and start in-place-editing as usual.TitledBorder

JTabbedPane: double-click on the tab title; or single-click on the tab, whose title you want to edit and
start in-place-editing as usual.

2.3.3 Keyboard Navigation

Keyboard navigation allows you to change the selection in the designer view using the keyboard. This
allows you for example to edit a bunch of labels using without having to use the mouse.in-place-editing
You can use the following keys:

Key Description

Up move the selection up

Down move the selection down

Left move the selection left

Right move the selection right

Home select the first component

End select the last component

Note: Keyboard navigation is currently limited to one container. You cannot move the selection to
another container using the keyboard.

2.3.4 Menu Designer

The menu designer makes it easy to create and modify menu bars and popup menus. It supports
in-place-editing menu texts and drag-and-drop menu items.

JFormDesigner 5.1 Documentation

- 14 -

1.

2.

3.

1.

2.

Menu bar structure

This figure shows the structure of a menu bar. The horizontal bar on
top of the image is a that contains components. The JMenuBar JMenu

 contains , , JMenu JMenuItem JCheckBoxMenuItem
 or Menu Separator components. To create aJRadioButtonMenuItem

sub-menu, put a into a .JMenu JMenu

The component provides a category "Menus" that contains all components necessary to createpalette
menus.

Creating menu bars

To create a menu bar:

add a to a JMenuBar JFrame

add to the andJMenus JMenuBar

add to the JMenuItems JMenus

Select the necessary components in the and drop them to the view.Palette Design

You can freely drag and drop the various menu components to rearrange them.

Creating popup menus

To create a popup menu:

add a to the free area in the view andJPopupMenu Design

add to the JMenuItems JPopupMenu

JFormDesigner 5.1 Documentation

- 15 -

Assign popup menus to components

If you use Java 5 or later, you can assign the popup menu to a component in the properties view using
the "componentPopupMenu" property. Select the component to which you want attach the popup menu
and assign it in the view. Note that you must expand the category to seeProperties Expert Properties
the property. Or use search as in the screenshot below.

Note that JFormDesigner must run on Java 5 (or later) to use the "componentPopupMenu" property.
Open the JFormDesigner About dialog and check whether it displays "Java 1.5.x" (or later).

2.3.5 Button Groups

Button groups () are used in combination with radio buttons to ensure thatjavax.swing.ButtonGroup
only one radio button in a group of radio buttons is selected.

To visualize the grouping, JFormDesigner displays lines connecting the grouped buttons.

Group Buttons

To create a new button group, select the buttons you want to group, right-click on a selected button and
select from the popup menu.Group Buttons

You can extend existing button groups by selecting at least one button of the existing group and the
buttons that you want to add to that group, then right-click on a selected button and select Group

 from the popup menu.Buttons

Note that the and commands are only available in the context menuGroup Buttons Ungroup Buttons
if the selection contains only components that are derived from (and JToggleButton JRadioButton

).JCheckBox

JFormDesigner 5.1 Documentation

- 16 -

Ungroup Buttons

To remove a button group, select all buttons of the group, right-click on a selected button and select
 from the popup menu.Ungroup Buttons

To remove a button from a group, right-click on it and select from the popup menu.Ungroup Buttons

ButtonGroup object

Button groups are . They appear at the bottom of the view and in the non-visual beans Structure Design
view. JFormDesigner automatically creates and removes those objects. You can rename button group
objects.

If a grouped button is selected, you can see the association to the button group in the view.Properties

2.3.6 JTabbedPane

JTabbedPane is a container component that lets the user switch between pages by clicking on a tab.

After adding a JTabbedPane to your form, it looks like this one:

To add pages, select an appropriate component (e.g. JPanel) in the palette, move the cursor over the
tabs area of the JTabbedPane and click to add it.

JFormDesigner 5.1 Documentation

- 17 -

You can see only the components of the active tab. Click on a tab to switch to another page. To change a
tab title, double-click on a tab to it. You can edit other tab properties (tool tip text, icon, ...)in-place-edit
in the view. Select a page component (e.g. JPanel) to see its tab properties.Properties

To change the tab order, select a page component (e.g. JPanel) and drag it over the tabs to a new place.
You can also drag and drop page components in the view to change its order.Structure

Use an empty border to separate the page contents from the JTabbedPane border. If you are using
JGoodies Forms, it's recommended to use . Otherwise use an .TABBED_DIALOG_BORDER EmptyBorder

2.3.7 Events

Components can provide events to signal when activity occurs (e.g. button pressed or mouse moved).
JFormDesigner shows events in the category in the view.Events Properties

IDE plug-ins: Click on the button () to go to the event handler method in the JavaGo to Method
editor of the IDE.

JFormDesigner 5.1 Documentation

- 18 -

Add Event Handlers

To add an event handler to a component, right-click on the component in the or viewDesign Structure
and select from the popup menu. Or click the button () in the Add Event Handler Add Event

 view. The events popup menu lists all available event listeners for the selected componentsProperties
and is divided into three sections: preferred, normal and expert event listeners.

The icon in the popup menu indicates that the listener interface will be implemented (e.g.

javax.swing.ChangeListener). The icon indicates that the listener adapter class will be used (e.g.

java.awt.event.FocusAdapter for java.awt.event.FocusListener). The icons and are used when the
listener is already implemented.

After selecting an event listener from the popup menu, you can specify the name of the handler method
and whether listener methods should be passed to the handler method in following dialog.

If you add a , youPropertyChangeListener
can also specify a property name (field is not
visible in screenshot). Then the listener is
added using the method
addPropertyChangeListener(String
propertyName, PropertyChangeListener

.listener)

The "Go to handler method in Java editor"
check box is only available in the IDE plug-ins
.

Stand-alone: After saving the form, go to your favorite IDE and implement the body of the generated
event handler method.

If you use the and the Java code generator is disabled, you must implement the handlerRuntime Library
method yourself in the target class. See documentation of method in theFormCreator.setTarget()
JFormDesigner Loader API for details.

Remove Event Handlers

To remove an event handler, click the button (). Or right-click on the event and select Remove Event
 from the popup menu.Remove Event

Change Handler Method Name

You can either edit the method name directly in the property table or click the ellipsis button () to open
the dialog where you can edit all event options.Edit Event Handler

JFormDesigner 5.1 Documentation

- 19 -

2.4 Palette
The component palette provides quick access to commonly used components () available forJavaBeans
adding to forms.

The components are organized in categories. Click on a category header to expand
or collapse a category.

You can add a new component to the form in following ways:

Select a component in the palette, move the cursor to the or Design Structure
view and click where you want to add the component.

Select , enter the class name of the component in the Choose Bean Choose
 dialog, click OK, move the cursor to the or view andBean Design Structure

click where you want to add the component.

To add multiple instances of a component, hold down the key (: Ctrl Mac
 key) while clicking on the or view.Command Design Structure

The component palette is fully customizable. Right-click on the palette to add, edit,
remove or reorder components and categories. Or use the .Palette Manager

Toolbar commands

Palette Manager Opens the dialog to customize the palette.Palette Manager

Palette Manager

This dialog allows you to fully customize the component palette. You can add, edit, remove or reorder
components and categories.

JFormDesigner 5.1 Documentation

- 20 -

Choose Bean

You can use any component that follows the specification in JFormDesigner. Select JavaBean Choose
 in the palette to open the Choose Bean dialog.Bean

Search tab

On this tab you can search for classes. Enter the first few characters of the class you want to choose until
it appears in the matching classes list. Then select it in the list and click OK.

Following pattern kinds are supported:

Wildcards: for any string; for any character; terminating or (space) prevents implicit"*" "?" "<" " "
trailing "*"

Camel case: for classes containing and as upper-case letters in camel-case notation,"JB" "J" "B"
e.g. or ; for classes containing and as parts in camel-caseJButton JideButton "DaPi" "Da" "Pi"
notation, e.g. DatePicker

The matching classes list displays all classes that match. It is separated into up to three sections:

History matches: classes found in the history of last used classes. If the search field is empty, the
complete history is displayed. To delete a class from the history, select it and press the keyDelete
or right-click on it an select from the popup menu.Delete

Project matches: classes found in the Classpath specified in the current .Project

Palette matches: classes found in the palette.

Filter Menu Options

Use Filter Classes are hidden if they do not match the filter. E.g. if the JavaBean filter is active and the
class is not public or does not have a public constructor.

Show Interfaces Includes interfaces in the list of matching classes.

JFormDesigner 5.1 Documentation

- 21 -

JARs tab

On this tab you can select classes that are marked as JavaBean in the JAR's manifest. The provider of the
component JAR can mark some classes as JavaBean in the manifest file. Popular 3rd party component
libraries like or use this to make it easier to find the few classes, whichMiG Calendar JIDE components
can be used in GUI builders, in libraries that contain hundreds of classes.

See also http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html#Per-Entry_Attributes

Other options

The check box allows you to specify whether a bean is a container or not.Is Container

If you select , the component will be added to the palette category specified inAdd to palette category
the following field. Click the button to create a new category for your components if necessary.New

Stand-alone: Use the button to specify the location of your component classes. Add your JARClasspath
files or class folders.

IDE plug-ins: The classpath specified in the IDE project is used to locate component classes.

http://www.migcalendar.com/
http://www.jidesoft.com/
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html#Per-Entry_Attributes

JFormDesigner 5.1 Documentation

- 22 -

2.5 Structure View
This view displays the hierarchical structure of the components in a form.

Each component is shown in the tree with an icon, its name and
additional information like layout manager class or the text of a
label or button. The name must be unique within the form and is
used as variable name in the generated Java code.

You can edit the name of the selected component in the tree by
pressing the key. Right-click on a component to invokeF2
commands from the context menu.

The selection in the Structure view and in the view isDesign
synchronized both ways.

The tree supports multiple selection. Use the key (: key) to add individual selections.Ctrl Mac Command
Use the key to add contiguous selections.Shift

The tree supports drag and drop to rearrange components. You can also add new components from the
 to the Structure view. Besides the feedback indicator in the structure tree, JFormDesigner alsopalette

displays a green feedback figure in the view to show the new location.Design

Various overlay icons are used in the tree to indicate additional information:

Icon Description

The component is bound to a Java class. Each component can have its own (nested) class. See Nested
 for details.Classes

The component has assigned to it. The bindings are shown in view and in the bindings Bindings Bindings
category in the view.Properties

The component has assigned to it. The events are shown in the category in the events Events Properties
view.

The component has custom code assigned to it. See properties.Code Generation

The variable modifier of the component is set to . See properties.public Code Generation

The variable modifier of the component is set to .default

The variable modifier of the component is set to .protected

The variable modifier of the component is set to .private

A property (e.g.) of the component has a reference to a non-existing component. ThisJLabel.labelFor
can happen if you e.g. remove a referenced . In the above screenshot, the component JTextField

 has a invalid reference.phoneLabel

Toolbar commands

Expand All Expand all nodes in the structure tree.

Collapse All Collapse all nodes in the structure tree.

JFormDesigner 5.1 Documentation

- 23 -

2.6 Properties View
The Properties view displays and lets you edit the properties of the selected component(s). Select one or
more components in the or view to see its properties. If more than one component isDesign Structure
selected, only properties that are available in all selected components are shown.

The properties table displays the component name, component class, layout and manager constraints
properties, , , , component properties and properties. Thebindings events client properties code generation
list of component properties comes from introspection of the component class (JavaBeans).

Properties are organized in categories, which you can
expand/collapse by clicking on the category name or on the small
plus/minus icons. The number of properties in a category and the
number of set properties is displayed near the category name.

The category names of component property categories (Properties,
Expert Properties, etc) are displayed in blue color.

Different font styles are used for the property names. Bold style is
used for preferred (often used) properties, plain style for normal
properties and italic style for expert properties. Read-only
properties are shown using a gray font color.

The light gray background indicates unset properties. The shown
values are the default values of the component. The white
background indicates set properties. Java code will be generated

for set properties only. Use () to unsetRestore Default Value
a property. Use () from the popup menu toSet Value to null
set a property explicitly to .null

A small arrow () near the property name indicates that the
property is .bound

Use () to organize component properties into three predefined categoriesGroup by Category
(normal, expert and read-only) and (defined in . (custom categories BeanInfo) Group by Defining Type

) organizes component properties into defining types (e.g. JTextField, JTextComponent, JComponent,

Container, Component). () shows all component properties in one category.Alphabetical

Changing property values

The left column displays the property names, the right column the property values. Click on a property
value to edit it.

You can either edit a value directly in the property table or use a custom property editor by clicking on
the ellipsis button () on the right side. The custom editor pops up in a new dialog. The globe button (
), which is only available for localized forms and string properties, allows you to choose existing strings
from the resource bundle of the form.

The type of the editor depends on the data type of the property. JFormDesigner has built-in property
 for all standard data types.editors

JFormDesigner 5.1 Documentation

- 24 -

For numbers, a spinner editor makes it easier to increase or decrease the value using the arrow buttons
or and keys. Press the key to confirm the change; or the key to cancel it.Up Down Enter Esc

Search for property names

To filter the list of shown properties, select the () toolbar button. This shows a text fieldShow Filter
below the toolbar, where you can enter your filter criteria.

Common properties and categories

Property/Category Description

Name The name of the component. Must be unique within the form. Used as variable name in the
generated Java code. It is also possible to specify a different variable name in the Code

 category.Generation

Class The class name of the component. The tooltip displays the full class name and the class
hierarchy. Click on the value to morph the component class to another class (e.g. JTextField
to JTextArea).

Button Group The name of the button group assigned to the component. This property is only visible for
components derived from (e.g. and).JToggleButton JRadioButton JCheckBox

Layout Manager Layout manager properties of the container component. Click on the plus sign to expand it.
The list of layout properties depends on the used layout manager. This property is only
visible for container components. Click on the value to .change the layout manager

Layout Constraints Layout constraints properties of the component. Click on the plus sign to expand it. The list
of constraints properties depends on the layout manager of the parent component. This
property is only visible if the layout manager of the parent component uses constraints.

Bindings Bindings of the component.

Events Events of the component.

Client Properties Client properties of the component. Click on the plus sign to expand it. This property is only
visible if there are client properties defined in the preferences.Client Properties

Code Generation Code Generation properties of the component.

"(form)" properties

Select the "(form)" node in the view to modify special form properties:Structure

Property Name Description

Form file format The format used to persist the form. See also "Form file format" option in General
preferences.

Set Component If , invokes java.awt.Component.setName() on all components of the form.true

JFormDesigner 5.1 Documentation

- 25 -

Property Name Description

Names

2.6.1 Layout Manager Properties

Each container component that has a has layout properties. The list of layout propertieslayout manager
depends on the used layout manager.

Select a container component in the or view to see its layout properties in the Design Structure
 view.Properties

This screenshot shows layout manager properties (alignment, horizontal and vertical gap) of a container
that has a FlowLayout.

When you add a container component to a form, following dialog appears and you can choose the layout
manager for the new container. You can also set the layout properties in this dialog.

2.6.2 Layout Constraints Properties

Layout Constraints properties are related to layout managers. Some layout managers (FormLayout,
TableLayout, GridBagLayout, ...) use constraints to associate layout information (e.g. grid x/y) to the
child components of a container.

The list of constraints properties depends on the layout manager of the parent component.

JFormDesigner 5.1 Documentation

- 26 -

Select a component in the or view to see its constraints properties in the Design Structure Properties
view.

This screenshot shows constraints properties of a component in a FormLayout.

2.6.3 Client Properties

What is a client property?

Swings base class for all components, , provides following methods that allowsjavax.swing.JComponent
you to set and get user-defined properties:

 public final Object getClientProperty(Object key);
 public final void putClientProperty(Object key, Object value);

Some Swing components use client properties to change their behavior. E.g. for JLabel you can disable
HTML display with You can use clientlabel.putClientProperty("html.disable", Boolean.TRUE);
properties to store any information in components. Visit on BenFinally... Client Properties You Can Use
Galbraith's Blog for a use case.

Define client properties

You can define client properties on the page in the dialog.Client Properties Preferences

Edit client properties

If you've defined client properties, JFormDesigner shows them in the view, where you can setProperties
the values of the client properties.

http://weblogs.java.net/blog/javaben/archive/2006/04/finally_client.html

JFormDesigner 5.1 Documentation

- 27 -

2.6.4 Code Generation Properties

This category contains properties related to the Java code generator.

Component

Property Name Description

Nested Class Name The name of the generated nested Java class. See for details.Nested Classes

Variable Name The variable name of the component used in the generated Java code. By default, it is equal
to the component name.

Variable Modifiers The modifiers of the variable generated for the component. Allowed modifiers: , public
, , , and . Default is .default protected private static transient private

Use Local Variable If , the variable is declared as local in the initialization method. Otherwise at class level.true
Default is .false

Gen. Getter Method If , generate a public getter method for the component. Default is .true false

Variable Annotations
(Java 5)

Annotations of component variable (Java 5).

Type Parameters
(Java 5)

Parameters of component type (Java 5). E.g. .MyTypedBean< >String

Custom Create If , create component in createUIComponents() method. Useful if you want usetrue
component factories for or non-default constructors. JFormDesigner generates the
createUIComponents() method, but no component instantiation code. It is your
responsibility to add code to createUIComponents().

Custom Creation
Code

Custom code for creation of the component.

Pre-Creation Code Code included before creation of the component.

Post-Creation Code Code included after creation of the component.

Pre-Initialization Code Code included before initialization of the component.

Post-Initialization
Code

Code included after initialization of the component.

"(form)" properties

Select the "(form)" node in the view to modify special form properties:Structure

Property Name Description

Generate Java Source
Code

If true, generate Java source code for the form. Defaults to "Generate Java source code"
option in the preferences.Java Code Generator

Default Variable
Modifiers

The default modifiers of the variables generated for components. Allowed modifiers: ,public
, , , and . Default is .default protected private static transient private

Default Use Local
Variable

If , the component variables are declared as local in the initialization method. Otherwisetrue
at class level. Default is .false

JFormDesigner 5.1 Documentation

- 28 -

Property Name Description

Default Gen. Getter
Method

If , generate public getter methods for components. Default is .true false

Default Event Handler
Modifiers

The default modifiers used when generating event handler methods. Allowed modifiers:
, , , , and . Default is .public default protected private final static private

Member Variable
Prefix

Prefix used for component member variables. E.g. "m_".

Use 'this' for member
variables

If enabled, the code generator inserts 'this.' before all member variables. E.g. this.
nameLabel.setText("Name:");

I18n Initialization
Method

If enabled, the code generator puts the code to initialize the localized texts into a method
initComponentsI18n(). You can invoke this method from your code to switch the locale of a
form at runtime.

I18n 'getBundle'
Template

Template used by code generator for getting a resource bundle. Default is
ResourceBundle.getBundle(${bundleName})

I18n 'getString'
Template

Template used by code generator for getting a string from a resource bundle. Default is
${bundle}.getString(${key})

I18n Key Constants
Class

The name of a class that contains constants for resource keys.

Binding Initialization
Method

If enabled, the code generator puts the code to create bindings into a method
initComponentBindings().

2.6.5 Property Editors

Property editors are used in the view to edit property values.Properties

You can either edit a value directly in the property table or use a custom property editor by clicking on
the ellipsis button () on the right side. The custom editor pops up in a new dialog.

The type of the editor depends on the data type of the property. JFormDesigner has built-in property
editors for all standard data types. Custom JavaBeans can provide their own property editors. Take a look
at the API documentation of , and java.beans.PropertyEditor java.beans.PropertyDescriptor

 and the topic for details.java.beans.BeanInfo JavaBeans

Built-in property editors

JFormDesigner has built-in property editors for following data types:

String, , , , , , , , , , , String[] boolean byte char double float int long short java.lang.Boolean
, , , , , java.lang.Byte java.lang.Character java.lang.Class java.lang.Double java.lang.Float

, , , and java.lang.Integer java.lang.Long java.lang.Short java.math.BigDecimal
java.math.BigInteger

ActionMap (javax.swing)

Border (javax.swing)

Color (java.awt)

ComboBoxModel (javax.swing)

Cursor (java.awt)

Dimension (java.awt)

Font (java.awt)

Icon (javax.swing)

JFormDesigner 5.1 Documentation

- 29 -

Image (java.awt)

InputMap (javax.swing)

Insets (java.awt)

KeyStroke (javax.swing)

ListModel (javax.swing)

Object (java.lang)

Paint (java.awt)

Point (java.awt)

Rectangle (java.awt)

SpinnerModel (javax.swing)

TableModel (javax.swing)

TreeModel (javax.swing)

ActionMap (javax.swing)

This (read-only) custom editor allows you to see the actions registered for a component in its action map.
The information in the column "Key Stroke" comes from the input map of the component and shows
which key strokes are assigned to actions. The JComponent property "actionMap" is read-only. Expand
the category in the view to make it visible.Read-only Properties Properties

Border (javax.swing)

You can either select a border from the combo box in the properties table or use the custom editor.

JFormDesigner 5.1 Documentation

- 30 -

In the custom editor you can edit all border properties. Use the combo box at the top of the dialog to
choose a border type. In the mid area of the dialog you can edit the border properties. This area is
different for each border type. At the bottom, you can see a preview of the border.

Following border types are supported:

BevelBorder

CompoundBorder

DropShadowBorder (SwingX)

EmptyBorder

EmptyBorder (JGoodies)

EtchedBorder

LineBorder

MatteBorder

SoftBevelBorder

TitledBorder

Swing look and feel

custom borders

Color (java.awt)

In the properties table, you can either enter RGB values, color names, system color names or Swing
UIManager color names. When using a RGB value, you can also specify the alpha value by adding a
fourth number.

The custom editor supports various ways to specify a color. Besides RGB, you can select a color from the
AWT, System or Swing palettes.

JFormDesigner 5.1 Documentation

- 31 -

ComboBoxModel (javax.swing)

This custom editor allows you to specify string values for a combo box.

Cursor (java.awt)

This editor allows you to choose a predefined cursor.

Dimension (java.awt)

Either edit the dimension in the property table or use the custom editor.

Font (java.awt)

You can either use absolute fonts, derived fonts or predefined fonts of the look and feel. Derived fonts are
recommended if you just need a bold/italic or a larger/smaller font (e.g. for titles), because derived fonts
are computed based on the current look and feel. If your application runs on several look and feels (e.g.
several operating systems), derived fonts ensure that the font family stays consistent.

In the properties table, you can quickly change the style (bold and italic) and the size of the font.

JFormDesigner 5.1 Documentation

- 32 -

In the custom editor you can choose one of the tabs to specify either absolute fonts, derived fonts or
predefined fonts.

Icon (javax.swing) and Image (java.awt)

This custom editor allows you to choose an icon. Either use an icon from the classpath, from the file
system or from the Swing UIManager (look and feel). It is recommended to use the classpath and embed
your icons into your application JAR.

JFormDesigner 5.1 Documentation

- 33 -

InputMap (javax.swing)

This (read-only) custom editor allows you to see the key strokes registered for a component in its input
map. The information in the column "Action" comes from the action map of the component and shows
which action classes are assigned to key strokes. The JComponent property "inputMap" is read-only.
Expand the category in the view to make it visible.Read-only Properties Properties

Insets (java.awt)

Either edit the insets in the property table or use the custom editor.

KeyStroke (javax.swing)

In the properties table, you can enter a string representation of the keystroke. E.g. "Ctrl+C" or
"Ctrl+Shift+S".

The custom editor supports two ways to specify a keystroke. Either type any key stroke combination if
the focus is in the first field or use the controls below.

JFormDesigner 5.1 Documentation

- 34 -

The KeyStroke editor supports menu shortcut modifier key (key on the Mac, keyCommand Ctrl
otherwise).

ListModel (javax.swing)

This custom editor allows you to specify string values for a list.

Object (java.lang)

This editor allows you to reference any (non-visual) JavaBean as a property value. Often used for
.JLabel.labelFor

Paint (java.awt)

This editor allows you to specify a object (used by). Use thejava.awt.Paint java.awt.Graphics2D
combo box at the top of the dialog to choose a paint type. In the mid area of the dialog you can edit the
paint properties. This area is different for each paint type. At the bottom, you can see a preview of the
paint. For GradientPaint you can click-and-drag the handles in the preview area to move the points.

JFormDesigner 5.1 Documentation

- 35 -

Following paint types are supported:

Color

GradientPaint

Point (java.awt)

Either edit the point in the property table or use the custom editor.

Rectangle (java.awt)

Either edit the rectangle in the property table or use the custom editor.

JFormDesigner 5.1 Documentation

- 36 -

SpinnerModel (javax.swing)

This custom editor allows you to specify a spinner model (used by). Use the combo box at theJSpinner
top of the dialog to choose a spinner model type (Number, Date or List). In the mid area of the dialog
you can edit the model properties. This area is different for each model type. At the bottom, you can see
a test spinner where you can test the spinner model.

String (java.lang)

Either edit the string in the property table or use the custom editor. Switch the "allow new-line" check
box on, if you want enter new lines.

JFormDesigner 5.1 Documentation

- 37 -

String[] (java.lang)

This custom editor allows you to specify string values for a string array.

TableModel (javax.swing)

This custom editor allows you to specify values for a table.

JFormDesigner 5.1 Documentation

- 38 -

TreeModel (javax.swing)

This custom editor allows you to specify string values for a tree.

JFormDesigner 5.1 Documentation

- 39 -

2.7 Bindings View
The Bindings view displays and lets you edit all of the form. The bindings and binding groups arebindings
shown in the order they will be bound.

This view is not visible by default. It appears at the bottom of the main window when you click the Show
 button () in the toolbar.Bindings View

The icon between the source and the target columns indicate the update strategy used by the binding:

Always sync (read-write)
Only read from source (read-only)
Read once from source (read-once)

Toolbar and context menu commands

Add Create a new binding.

Add Group Create a new binding group.

Remove Remove the selected bindings.

Properties Displays the properties of the selected binding in the .Binding dialog

Move Up Move the selected bindings up.

Move Down Move the selected bindings down.

Link with Designer Links the bindings selection to the active designer.

Close Closes the Bindings view.

Double-click on a binding item to see its details in the .Binding dialog

JFormDesigner 5.1 Documentation

- 40 -

2.8 Error Log View
This view appears at the bottom of the main window if an exception is throw by a bean. You can see
which bean causes the problem and the stack trace of the exception. This makes it much easier to solve
problems when using your own (or 3rd party) beans.

Toolbar commands

Copy Log Copies all log records to the clipboard.

Clear Log Clears the log.

Properties Displays the properties of the selected log record in a dialog (see below).

Close Closes the Error Log view.

Double-click on a log entry to see its details:

How to fix errors

This mainly depends on the error. The problem shown in the above screenshots is easy to fix by setting
 to a value between 0 and 1.resizeWeight

If the problem occurs in your own beans, use the stack trace to locate the problem and fix it in your

bean's source code. After compiling your bean, click the button () in the designerRefresh Designer
toolbar to reload your bean.

If you are using 3rd party beans, it is possible that you need to add additional libraries to the classpath.
You should be able to identify such a problem on the kind of exception. In this case, add the needed
libraries to the JFormDesigner classpath of the current , and refresh the Design view.Project

JFormDesigner 5.1 Documentation

- 41 -

3 Localization
JFormDesigner provides easy-to-use and powerful localization/internationalization support:

 and strings.Externalize internalize

Edit resource bundle strings.

Create new locales.

Delete locales.

Switch locale used in Design view.

In-place-editing strings of current locale.

Auto-externalize strings.

Choose existing strings.

Updates resource keys when renaming components.

Copies resource strings when copying components.

Removes resource strings when deleting components.

Localization preferences.

Use .properties or .xml files.

Fully integrated in undo/redo.

The locales combo box in the toolbar allows you to select the locale used in the , and Design Structure
 views. If you a localized string in the Design view , you change it in the currentProperties in-place-edit

locale. A small globe in front of property values in the Properties view indicates that the string is
localized (stored in a properties file).

JFormDesigner 5.1 Documentation

- 42 -

Create a new localized form

When creating a new form, you can specify that JFormDesigner should put all strings into a resource
bundle (.properties file). In the dialog select the checkNew Form Store strings in resource bundle
box, specify a resource bundle name and a prefix for generated keys. If isAuto-externalize strings
selected, then JFormDesigner automatically puts all new strings into the properties file (auto-externalize).
E.g. when you add a to the form and change the "text" and "toolTipText" properties, both stringsJLabel
will be put into the properties file.

To localize existing forms use .Externalize Strings

JFormDesigner 5.1 Documentation

- 43 -

Edit localization settings and resource bundle strings

To edit localization settings and resource bundle strings, select from the main menu orForm > Localize
click the button () in the toolbar. Here you can create or delete locales and edit strings. TheLocalize
light gray color used to draw the string "Name:" in the table column "German" indicates that the string is
inherited from a parent locale.

The field is used to locate the properties files within the of theResource bundle name Source Folders
current . Use the button to choose a resource bundle (.properties file).Project Browse

In the field you can specify a prefix for generated resource bundle keys. ThePrefix for generated keys
format for generated keys is "<prefix>.<componentName>.<propertyName>". You can change the
separator ('.') in the .Localization preferences

If the check box is selected, then JFormDesigner automatically puts all newAuto-externalize strings
strings into the properties file. E.g. when you add a to the form and change the "text" andJLabel
"toolTipText" properties, both strings will be put into the properties file. You can exclude properties from
externalization in the .Localization preferences

JFormDesigner 5.1 Documentation

- 44 -

Create new locale

To create a new locale, either select from the main menu, () fromForm > New Locale New Locale
the toobar or click the button in the dialog. Select a language and an optionalNew Locale Localize
country. You can copy strings from an existing locale into the new locale, but JFormDesigner fully
supports inheritance in the same way as specified by . E.g. if a message isjava.util.ResourceBundle
not in locale "de_AT" then it will be loaded from locale "de".

Delete a locale

To delete an existing locale, either select from the main menu, (Form > Delete Locale Delete Locale
) from the toobar or click the button in the dialog. Select the locale to delete.Delete Locale Localize

JFormDesigner 5.1 Documentation

- 45 -

Externalize strings

Externalizing allows you to move strings from a .jfd file to a .properties file. If you want localize existing
forms, start here.

Select from the main menu or () from the toolbar,Form > Externalize Strings Externalize Strings
specify the resource bundle name, the prefix for generated keys and select/deselect the strings to
externalize. You can exclude properties from externalization in the .Localization preferences

You can also externalize and internalize properties in the view.Properties

JFormDesigner 5.1 Documentation

- 46 -

Internalize strings

Internalizing allows you to move strings from a .properties file to a .jfd file.

Select from the main menu or () from the toolbar,Form > Internalize Strings Internalize Strings
specify the locale to internalize from and select/deselect the strings to internalize. If you internalize all
strings, JFormDesigner asks you whether you want to disable localization for the form.

Choose existing strings

The globe button () in the view, which is only available for localized forms and stringProperties
properties, allows you to choose existing strings from the resource bundle of the form.

In the dialog you can search for keys and/or values. Then select a key in the table andChoose Key
press OK to use its value in the form.

JFormDesigner 5.1 Documentation

- 47 -

4 Beans Binding (JSR 295)
JFormDesigner supports the Beans Binding specification (JSR 295).

A binding syncs two properties: the source property with the target property. The source is usually a
(non-visual) object and the target is usually an UI component (e.g. a). Initiallydata model JTextField
the value of the source property is copied to the target property. Depending on the "Update strategy", a
binding tracks changes on both properties and syncs the properties.

Beans Binding is open source and part of the standard Java distribution. You must ship annot
additional library with your application. JFormDesigner includes , beansbinding.jar

 and in its folder. For more documentationbeansbinding-doc.zip beansbinding-src.zip redist
and tutorials, visit .beansbinding.java.net

The API documentation is also available here: .doc.formdev.com/beansbinding/

The view gives a good overview of all bindings in the form. The buttonBindings Show Bindings View
 makes this view visible. The property category in the view shows the bindingsBindings Properties

of the selected component and you can add (), edit () and remove () bindings. Small arrows
indicate that the property is bound. Binding groups are also shown in the view . The Structure Binding
palette category provides useful components.

http://beansbinding.java.net/
http://doc.formdev.com/beansbinding/

JFormDesigner 5.1 Documentation

- 48 -

Add/Edit Bindings

There are several ways to add/edit bindings:

Right-click on a component in the or view and select from the popup menu.Design Structure Bind
To edit an existing binding, select a bound property from the submenu.Bind

Click the button (/) in the property category in view.Add/Edit Binding Bindings Properties

Right-click on a component property in the view and select from the popup menu.Properties Bind

Use the / command in the view.Add Properties Bindings

Remove Bindings

To remove existing bindings do one of:

Click the button () in the property category in view.Remove Binding Bindings Properties

Use the command in the view.Remove Bindings

Binding Dialog

This dialog enables you to edit all options of one binding.

General tab

Field Description

Source The source object.

Source
path

The path (or expression) that identifies the
source property.

Detail
path

The path (or expression) that determines
what is displayed to the user in the target
JList.
(only if target is JList.elements)

Target The target object.

Target
path

The path (or expression) that identifies the
target property.

Update
strategy

Specifies how the properties are kept
synchronized. Possible values: "Always sync
(read-write)", "Only read from source
(read-only)" and "Read once from source
(read-once)".

Update
source
when

Specifies when the source is updated from
the target. Possible values: "While typing",
"On focus lost" and "On focus lost or Enter
key pressed".
(only if target is JTextComponent.text)

Ignore
adjusting

If enabled, do not update properties until
the user finished adjusting. E.g. while a
slider is adjusting its value or while the list
selection is being updated.
(only if target is JSlider.value,
JList.selectedElement(s) or
JTable.selectedElement(s))

JFormDesigner 5.1 Documentation

- 49 -

Advanced tab

Field Description

Name The binding's name. Useful for
.BindingGroup.getBinding(name)

Group The group this binding belongs to.

Converter The that converts the valueConverter
from source type to target type and vice
versa.

Validator The that validates the valueValidator
before passing it from the target back to
the source property.

Source null Used if the value of the source property
is null.

Source
unreadable

Used if the source property is
unreadable.

Target null Used if the value of the target property is
null.

Bind
immediately

Bind this binding immediately after
creation. Otherwise bind when the group
is bound.

Table Binding tab

On this tab you can bind element properties to columns. Each item in the source List<E> JTable
 represents a row in the . See for details about table binding.List<E> JTable JTableBinding

This tab is enabled if source is an instance of , target an instance of java.util.List<E>
 and target property is .javax.swing.JTable elements

Field Description

Editable Specifies whether the table
cells are editable or not.

Columns The column bindings. The
Source Path identifies the
source property in . The<E>
Column Name is shown in
the JTable column header.
Each column binding may
have its own , Converter

 and AlternativeValidator
Values.

http://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/BindingGroup.html#getBinding%28java.lang.String%29
http://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/Converter.html
http://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/Validator.html
http://doc.formdev.com/beansbinding/org/jdesktop/swingbinding/JTableBinding.html
http://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/Converter.html
http://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/Validator.html

JFormDesigner 5.1 Documentation

- 50 -

Path or Expression

To address source or target properties you can either use a path or an expression. Select the Expression
 button () left to the input field to enter an expression.Language

A path (implemented by) uses a dot-separated path syntax. E.g. addresses theBeanProperty task.title
 property of an object's property. This is equivalent to .title task source.getTask().getTitle()

An expression (implemented by) uses the (EL) also known from andELProperty Expression Language JSP
. Besides a dot-separated path syntax to address properties (e.g. " ") it also supportsJSF ${task.title}

following :operators

Arithmetic: , , , and , and + - * / div % mod

Logical: , , , , , and && or || not !

Relational: , , , , , , , , , , , == eq != ne < lt > gt <= ge >= le

Empty: empty

Conditional: A ? B : C

EL expression examples:

EL expression Result

${task.title} The property of an object's property.title task

${firstName} ${lastName} Concatenation of and properties.firstName lastName

${mother.age > 65} true if mother is older than 65, otherwise.false

${image.width * image.height} Computes the number of pixels of an image.

${image.width * image.height * 4} Computes the number of bytes of an 32 bit image.

Following words are reserved for the EL and should not be used as identifiers:

 and or not div mod
 eq ne lt gt ge le
 true false null empty instanceof

Data model

The data model used by Beans Binding (JSR 295) is based on the specification. Getters areJavaBeans
necessary to read property values and setters to modify property values. On modifications, property
change events should be fired so that beans binding can update the UI components. E.g.:

public Task class {
 titleprivate String ;

 getTitle public String () {
 titlereturn ;
 }

 setTitle title public void (String) {
 oldTitle .String = this title;
 . titlethis title = ;
 changeSupport. , oldTitle, titlefirePropertyChange("title");
 }

 changeSupport private final PropertyChangeSupport = new PropertyChangeSupport(this);

 addPropertyChangeListener listener public void (PropertyChangeListener) {
 changeSupport. listeneraddPropertyChangeListener();
 }

 removePropertyChangeListener listener public void (PropertyChangeListener) {
 changeSupport. listenerremovePropertyChangeListener();
 }
}

http://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/BeanProperty.html
http://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/ELProperty.html
http://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://javaserverfaces.java.net/
http://docs.oracle.com/javaee/6/tutorial/doc/bnaik.html

JFormDesigner 5.1 Documentation

- 51 -

1.

2.

3.

4.

5.

6.

7.

Data model access

The source and target combo boxes in the dialog offer only the components added to the form.Binding
To bind your data model to form components, you could add an instance of your data object to the form
(using), but this requires that the data object is a with public null constructor,Choose Bean JavaBean
which is not always possible.

The preferred way to access the data model for binding is to add a getter for the data model to the form
class. E.g.:

public TaskViewForm class extends JPanel {
 Task taskprivate ;

 Task getTask public () {
 taskreturn ;
 }
}

After compiling the form class, you can use as binding source and as bindingthis task.someProperty
source path.

Add a setter to the form class, if the whole data model may change. E.g.:

public TaskViewForm class extends JPanel {
 setTask Task task public void () {
 Task oldTask .= this task;
 . taskthis task = ;
 firePropertyChange , oldTask, task("task");
 }
}

How to bind data to a JTable

Beans Binding requires that the data is in a (or). The type of each datajava.util.List ObservableList
row should be specified as type parameter to the list. E.g. . The data classjava.util.List<MyData>
should have getters and setters for its values, which can bound to table columns.

Steps to bind a table:

Add a component from the palette category to the form. JFormDesignerjava.util.List Bindings
creates a variable for the list in the Java code, but does not assign a value to it. Its up to you, to
assign data to the list before invoking .initComponents()

Set the property (expand the property in view) of the toType Parameters Class Properties List
your data class (e.g.). Make sure that the data class is compiled and in the classpath of theMyData
project.

Add a to the form.JTable

Right-click on the table and select from the popup menu, which opens the Bind > elements Binding
dialog.

On the tab, set the source to your object and leave the source path empty.General List

Switch to the tab.Table Bindings

Click the button and add columns.Add Multiple

Examples

For examples that use Beans Binding, take a look at the package
 in the .com.jformdesigner.examples.beansbinding examples

http://doc.formdev.com/beansbinding/org/jdesktop/observablecollections/ObservableList.html

JFormDesigner 5.1 Documentation

- 52 -

5 Projects
Stand-alone edition only. The use the source folders and classpath from the IDE projects.IDE plug-ins

Projects allow you to store project specific options in project files. You can create new projects or open
existing projects using the or .menubar toolbar

When you start JFormDesigner the first time, it creates and opens a default project named
DefaultProject.jfdproj in the folder ${user.home}/.jformdesigner, where ${user.home} is your home
directory. You can see the value of ${user.home} in the About dialog on the System tab.

You can use the default project, but it is recommended to create an own JFormDesigner project in your
project root folder. Then you can commit the JFormDesigner project file into a version control system and
reuse it on other computers. Paths in the project file are stored relative to the location of the project file.
Project files have the extension .jfdproj

Pages

General
Source Folders
Classpath

Project specific pages:preference

FormLayout (JGoodies)
null Layout
Localization
Java Code Generator

Templates
Layout Managers
Localization
Binding
Code Style

Client Properties

General

When creating a new project, you can specify a project name and the location where to store the project
file.

JFormDesigner 5.1 Documentation

- 53 -

Source Folders

On this page, you can specify the locations of your Java source folders. Source folders are the root of
packages containing .java files and are used find resource bundles for and are also used bylocalization
the to generate package statements.Java code generator

If the folders list is focused, you can use the key to add folders or the key to deleteInsert Delete
selected folders.

Classpath

To use your custom components (JavaBeans), JFormDesigner needs to know, from where to load the
JavaBean classes. Specify the locations of your custom JavaBeans on this page. You can add JAR files or
folders containing .class files.

If the classpath list is focused, you can use the key to add folders/JAR files, the key toInsert Delete
delete selected folders/JAR files, keys to move selected items up or keys to moveCtrl+Up Ctrl+Down
selected items down.

JFormDesigner 5.1 Documentation

- 54 -

6 Preferences
This dialog is used to set user preferences.

Stand-alone: Select from the menu to open this dialog.Window > Preferences

Eclipse plug-in: The JFormDesigner preferences are fully integrated into the Eclipse preferences
dialog. Select from the menu to open it and then expand the nodeWindow > Preferences
"JFormDesigner" in the tree.

NetBeans plug-in: NetBeans uses the term "Options" instead of "Preferences". The JFormDesigner
preferences are fully integrated into the NetBeans options dialog. Select from theTools > Options
menu to open it and then select the "JFormDesigner" page.

IntelliJ IDEA plug-in: IntelliJ IDEA uses the term "Settings" instead of "Preferences". The
JFormDesigner preferences are fully integrated into the IntelliJ IDEA settings dialog. Select File >

 from the menu to open it and then click the item named "JFormDesigner" in the "IDESettings
Settings" area.

JBuilder plug-in: The JFormDesigner preferences are fully integrated into JBuilder preferences
dialog. Select from the menu to open it.Tools > Preferences

Pages

General
FormLayout (JGoodies)
GridBagLayout
null Layout
Localization
Look and Feels
Java Code Generator

Templates
Layout Managers
Localization
Binding
Code Style (only)Stand-alone

Client Properties
Native Library Paths
BeanInfo Search Paths
Squint Test
Check for Updates

Import and export preferences

In the Preferences dialog, you can use the () button to import preferences from a file and the Import
 () button to export preferences to a file. This preferences file is compatible with allExport

JFormDesigner editions. On export, you can specify what parts of the preferences you want export. You
can also use IDE specific commands:

Eclipse plug-in: You can use the menu commands and to import andFile > Import File > Export
export preferences to/from Eclipse preferences files.

NetBeans plug-in: You can use the and buttons in the Options dialog to importImport Export
and export options to/from NetBeans options files.

IntelliJ IDEA plug-in: You can use the menu commands and File > Import Settings File >
 to import and export settings to/from IntelliJ IDEA preferences files.Export Settings

JBuilder plug-in: Import and export of preferences is not supported.

Note: Each IDE uses its own file format for preferences. The only way to transfer preferences between
the different JFormDesigner editions is to use JFormDesigner preferences files.

Restore defaults

Use the () button to restore the values of the active page to its defaults.Restore Defaults

JFormDesigner 5.1 Documentation

- 55 -

General

On this page, you can specify general options.

Option Description Default

Animate layout
changes in Design
view

If enabled, changes to the layout in the view are done animated.Design On

Animation speed The speed of the animation. default

Buffer Design view in
video memory

If enabled, parts of the view are buffered in the video memory of theDesign
graphics card to improve painting speed.

On

Undo history size The maximum number of steps in the undo history of a form. 1000

Form file format The format used to persist the form. Since version 5.1, JFormDesigner supports
the compact, easy-to-merge and fast-to-load persistence format JFDML. To
change the persistence format of an existing form, open the form, select the

 node in the Structure view and change the "Form file format" property"(form)"
in the Properties view. Or use the JFormDesigner to convertcommand-line tool
the format of many forms.

JFDML

JFormDesigner 5.1 Documentation

- 56 -

FormLayout (JGoodies)

On this page, you can specify related options.FormLayout

Option Description Default

Automatically
insert/remove gap
columns/rows

If enabled, JFormDesigner automatically inserts/removes gap columns/rows. On

JGoodies Forms
version

Required JGoodies Forms version for the created forms. auto-detect

Column/row
templates for new
columns/rows

Here you can specify the column and row templates that should be used when
new columns or rows are inserted.

 Column The column template used for new columns. default

 Column gap The column template used for new gap columns. label
component
gap

 Row The row template used for new rows. default

 Row gap The row template used for new gap rows. line gap

Custom column/row
templates

If the does not fit to your needs, you can define your ownpredefined templates
here. Since JGoodies Forms 1.2 you can add these custom column/row
templates to the global LayoutMap using the "LayoutMap Initialization Code"
link.

JFormDesigner 5.1 Documentation

- 57 -

Custom column/row templates

Option Description

Display name The display name is used within JFormDesigner whenever the template is shown in combo
boxes or popup menus.

Identifier The (unique) identifier is stored in form files. Choose a short string. Only letters and digits
are allowed.

Use for Specifies whether the template should be used for columns, rows or both. Also specifies
whether it represents a gap column/row.

Default alignment The default alignment of the components within a column/row. Used if the value of the
component constraint properties "h align" or "v align" are set to DEFAULT.

Size The width of a column or height of a row. You can use default, preferred or minimum
component size. Or a constant size. It is also possible to specify a minimum and a maximum
size. Note that the maximum size does not limit the column/row size if the column/row can
grow (see resize behavior).

Resize behavior The resize weight of the column/row.

Java code Optional Java code used by the Java code generator. Useful if you have factory classes for
ColumnSpecs and RowSpecs. Not available for JGoodies Forms 1.2 and later.

JFormDesigner 5.1 Documentation

- 58 -

GridBagLayout

On this page, you can specify related options.GridBagLayout

Option Description Default

Default properties for
new columns/rows

Here you can specify the column and row properties that should be used when
new columns or rows are inserted.

 Column The column properties used for new columns. fill:0:0.0

 Row The row properties used for new rows. fill:0:0.0

null Layout

On this page, you can specify related options.null layout

JFormDesigner 5.1 Documentation

- 59 -

Option Description Default

Snap to grid If enabled, snap to the grid specified below when moving or resizing a
component in null layout.

On

Grid X step The horizontal step size of the grid. 5

Grid Y step The vertical step size of the grid. 5

Localization

On this page, you can specify related options.localization

Option Description Default

Rename resource
keys when renaming
components

If enabled, auto-rename resource keys when renaming
components and the resource key contains the old component
name.

On

Copy localized
messages when
copying components

If enabled, duplicate localized strings in all locales when copying
components.

On

Delete localized
messages when
deleting components

If enabled, auto-delete localized strings, that were used by the
deleted components, from all locales.

On

Delete localized
messages when
internalizing strings

If enabled, auto-delete localized strings, that were internalized,
from all locales.

On

Delete messages only
if key prefix is equal

If enabled, messages will be auto-deleted only if their key prefix On

JFormDesigner 5.1 Documentation

- 60 -

Option Description Default

to form's key prefix is equal to the key prefix of the form.

Insert new messages Specifies where new messages will be inserted into properties
files. "next to similar keys" inserts new messages next to other
similar keys so that messages that belong together are
automatically at the same location in the properties file. "at the
end of the properties file" always appends new messages to the
end of the properties file.

next to similar keys
(ascending order)

Format used for
generated keys

Format used when generating a resource key. ${componentName}
${sep}${propertyName}

Separator used for
generated keys

Separator used when generating a resource key. '.'

Template for
properties files

Template used when creating new properties files.

Exclude properties
from externalization

Specify properties that should be excluded from externalization.
Useful when using auto-externalization to ensure that some
string property values stay in the Java code.

If the list is focused, you can use the key to add aInsert
property or the key to delete selected properties.Delete

Look and Feels

On this page, you can add Swing look and feels for use in the view.Design

Note: Because Swing is not designed to use two look and feels at the same time (application and Design
view), it can not guaranteed that each look and feel works without problems. The popular and Substance

 look and feels are currently not supported.Synthetica

JFormDesigner 5.1 Documentation

- 61 -

If the look and feels list is focused, you can use the key to add a look and feel or the keyInsert Delete
to delete selected look and feels.

Option Description

Jar path Full path name of the jar file that contains the look and feel classes. Use the buttonBrowse
to select a jar.

Name Name of the look and feel used in the look and feel combo box in the .Toolbar

Class name Class name of the look and feel class (derived from).javax.swing.LookAndFeel

License code License code for the commercial .Alloy Look and Feel

http://www.incors.com/

JFormDesigner 5.1 Documentation

- 62 -

Java Code Generator

On this page, you can turn off the Java code generator and specify other code generation options.

Option Description Default

Generate Java source
code

If enabled, JFormDesigner generates Java source code when you save a
form.

On

Source compatibility Specifies the compatibility of the generated source code. Besides
generating Java 1.x compatible source code, JFormDesigner can also
use Java 5 (or later) features in the generated source code (e.g.
auto-boxing, @Override, etc).

Stand-alone: use
JRE version
IDE plug-ins:
use project
setting

Explicit imports If enabled, the code generator adds explicit import statements (without
'*') for used classes.

Off

Container blocks If enabled, the code generator puts the initialization code for each
container into a block (enclosed in curly braces).

On

Comments If enabled, the code generator puts a comment line above the
initialization code for each component.

On

Set component
names

If enabled, the code generator inserts java.awt.Component.setName()
statements for all components of the form.

Off

Use Eclipse code
formatter

If enabled, the Eclipse code formatter is used to format the generated
code. (only)Eclipse plug-in

Off

Eclipse non-nls tags
(//$NON-NLS-n$)

If enabled, the code generator appends non-nls comments to lines
containing strings. These comments are used by the Eclipse IDE to
denote strings that should not be externalized.

Off

JFormDesigner 5.1 Documentation

- 63 -

Option Description Default

NetBeans no-i18n
tags (//NOI18N)

If enabled, the code generator appends non-nls comments to lines
containing strings. These comments are used by the NetBeans IDE to
denote strings that should not be externalized.

Off

Use 'this' for member
variables

If enabled, the code generator inserts 'this.' before all member
variables. E.g. nameLabel.setText("Name:");this.

Off

Member variables
prefix

Prefix used for component member variables. E.g. "m_".

Class modifiers Class modifiers used when generating a new class. Allowed modifiers:
, , and .public default abstract final

public

Nested class modifiers Class modifiers used when generating a new nested class. Allowed
modifiers: , , , , , andpublic default protected private abstract final

.static

private

Variable modifiers The default modifiers of the variables generated for components.
Allowed modifiers: , , , , and public default protected private static

. transient

private

Event handler
modifiers

The default modifiers used when generating event handler methods.
Allowed modifiers: , , , , and public default protected private final

.static

private

You can set additional options per form in the ."(form)" properties

Templates (Java Code Generator)

This page contains templates that are used by the code generator when generating a new class. See
 for details about templates.Code Templates

JFormDesigner 5.1 Documentation

- 64 -

New: Create a new template for a specific superclass.
: Edit the superclass of the selected user-defined template.Edit

: Remove the selected template. Only allowed for user-defined templates.Remove
: Reset the selected predefined template to the default.Reset

: Insert a variable at the current cursor location into the selected template.Insert Variable

Layout Managers (Java Code Generator)

On this page, you can specify code generation options for some layout managers.

Option Description Default

Use PanelBuilder in
generated code

If enabled, the PanelBuilder class of JGoodies Forms is used for
FormLayout.

Off

Use empty
GridBagConstraints
constructor

If enabled, the empty GridBagConstraints constructor is used in
the generated code, which is necessary for Java 1.0 and 1.1
compatibility. Since Java 1.2, GridBagConstraints has a constructor
with parameters, which is used by default.

Off

GroupLayout
Generation Style

Specifies whether class javax.swing.GroupLayout is used, which is
part of Java 6 and later. Or whether
org.jdesktop.layout.GroupLayout from the Open Source Swing

 library swing-layout.jar is used, which is also available forLayout
Java 1.4 and 5.

use source
compatibility
(see Java Code

 preferencesGenerator
page)

TableLayout package Package name used by the Java code generator for TableLayout. info.clearthought.layout

http://swing-layout.java.net/
http://swing-layout.java.net/

JFormDesigner 5.1 Documentation

- 65 -

Option Description Default

Change this only if you have a copy of the original TableLayout in
another package.

Localization (Java Code Generator)

On this page, you can specify code generation options for localization.

Option Description Default

Generate
initComponentsI18n()
method

If enabled, the code generator puts the code to initialize the
localized texts into a method initComponentsI18n(). You can
invoke this method from your code to switch the locale of a
form at runtime. You can set this options also per form in the

."(form)" properties

Off

'getBundle' template Template used by code generator for getting a resource
bundle.

ResourceBundle.getBundle
(${bundleName})

'getString' template Template used by code generator for getting a string from a
resource bundle.

${bundle}.getString(${key})

JFormDesigner 5.1 Documentation

- 66 -

Binding (Java Code Generator)

On this page, you can specify code generation options for Beans Binding (JSR 295).

Option Description Default

Generate
initComponentBindings()
method

If enabled, the code generator puts the code to create bindings into a
method initComponentBindings(). You can set this options also per form in
the ."(form)" properties

Off

Code Style (Java Code Generator)

Stand-alone: On this page, you can specify code style options, which are used for code generation.

IDE plug-ins: This page is not available in IDE plug-ins because IDEs already have preferences that
control code style. JFormDesigner uses the code style settings from IDE projects or preferences.

JFormDesigner 5.1 Documentation

- 67 -

Option Description Default

Indent size The number of spaces used for one indentation level. 4

Tab size The number of spaces that represents one tabulation. 4

Use tab character Specifies whether the tab character (\t) is used for indentation or only
space characters.

On

Line separator The line separator used for newly created .java and .properies files. Platform default

Encoding The character encoding used for reading and writing Java files. Platform default

Client Properties

On this page, you can can define , which can be set in the view.client properties Properties

JFormDesigner 5.1 Documentation

- 68 -

If the client properties list is focused, you can use the key to add a client property or the Insert Delete
key to delete selected client properties.

Option Description

Key The key that identifies the client property.

Component class(es) The component class(es) to which the client property belongs. E.g. if set to
javax.swing.JButton, then the client property is shown in the view for buttons andProperties
for subclasses of JButton. To specify multiple classes, separate them with commas. If not
specified, the client property is shown for all JComponent components.

Value type The type of the client property value. You can select one of the common types (String,
Boolean, Integer, etc) from the combo box or enter the class name of a custom type.

Predefined values If the value type is java.lang.String, then you can specify predefined values for the client
property. When editing the client property in the view, a combo box that containsProperties
these values is shown. The combo box is editable by default. Select the "Allow only
predefined values" check box to make the combo box not-editable.

Property editor class Optional class name of a property editor that should be used when editing the client
property in the view.Properties

JFormDesigner 5.1 Documentation

- 69 -

Native Library Paths

On this page, you can specify the locations of custom JavaBeans that use native libraries and you can
specify the folders where to search for the native libraries.

Note: When removing or changing paths, a restart of JFormDesigner (or the IDE) is probably necessary
to make the changes work.

Option Description

Classpath for
JavaBeans, which use
native libraries

JAR files or folders containing .class files, which are using native libraries. They must be
specified here to ensure that the native libraries are loaded from a special class loader only
once.

Native Library Path Folders used to search for native libraries.

JFormDesigner 5.1 Documentation

- 70 -

BeanInfo Search Paths

On this page, you can specify package names that will be used for finding BeanInfo classes and property
editors.

Option Description

BeanInfo search path Package names that will be used for finding BeanInfo classes. Only necessary if the BeanInfo
class is not in the same package as the component class to which it belongs. See

 and for details.java.beans.Introspector Introspector.setBeanInfoSearchPath()

Property editor search
path

Package names that will be used for finding property editors. Only necessary if the property
editor is not in the same package as the property type to which it belongs. See

 and forjava.beans.PropertyEditorManager PropertyEditorManager.setEditorSearchPath()
details.

http://docs.oracle.com/javase/7/docs/api/java/beans/Introspector.html
http://docs.oracle.com/javase/7/docs/api/java/beans/Introspector.html#setBeanInfoSearchPath%28java.lang.String%5B%5D%29
http://docs.oracle.com/javase/7/docs/api/java/beans/PropertyEditorManager.html
http://docs.oracle.com/javase/7/docs/api/java/beans/PropertyEditorManager.html#setEditorSearchPath%28java.lang.String%5B%5D%29

JFormDesigner 5.1 Documentation

- 71 -

Squint Test

This page allows you to specify the squint level for the squint test (menu >).View Squint Test

Check for Updates

This page allows you to specify whether JFormDesigner should check for updates and new versions. Click
the "Check Now" button to check for updates immediately.

JFormDesigner 5.1 Documentation

- 72 -

7 IDE Integrations
JFormDesigner is available as stand-alone application and as plug-ins for various IDEs. The IDE plug-ins
completely integrate JFormDesigner into the IDEs.

Following IDE plug-ins are available:

Eclipse plug-in

NetBeans plug-in

IntelliJ IDEA plug-in

JBuilder plug-in

Other IDEs

If there is no JFormDesigner plug-in for your favorite IDE, you can use the stand-alone edition of
JFormDesigner side by side with your IDE.

IDE plug-in for JDeveloper is already under development.

IDE interworking with stand-alone edition

Care must be taken because you edit the Java source in the IDE and JFormDesigner stand-alone also
modifies the Java source file when generating code for the form. As long as you follow the following rule,
you will never have a problem:

Save the Java file in the IDE saving the form in JFormDesigner stand-alone.before

Your IDE will recognize that the Java file was modified outside of the IDE and will reload it. Some IDEs
ask the user before reloading files, other IDEs silently reload files.

If you have not saved the Java file in the IDE, then you should prevent the IDE from reloading it. In this
case save the Java file in the IDE and then use in JFormDesigner stand-alone.Generate Java Code

JFormDesigner generates Java code when you either the form or select .Save Generate Java Code
JFormDesigner does not hold a copy of the Java source in memory. Every time JFormDesigner generates
Java code, it first reads the Java source file, parses it, updates it and writes it back to the disk.

JFormDesigner 5.1 Documentation

- 73 -

7.1 Eclipse plug-in
This plug-in integrates JFormDesigner into and other Eclipse based IDEs.Eclipse

Benefits

Using this plug-in has following benefits compared to JFormDesigner stand-alone edition:

Fully integrated as editor for JFormDesigner .jfd files. Create and design forms within Eclipse. No
need to switch between applications.

Uses the source folders and classpath of the current Eclipse project. No need to specify them twice.

The Java code generator updates the .java file in-memory on each change in the designer. You can
design forms and edit its source code without the need to save them (as necessary when using
JFormDesigner stand-alone edition).

Folding of generated GUI code in Java editor.

Go to event handler method in Java editor.

Two-way synchronization of localized strings in designer and in properties file editors. Changing
localized strings in the designer immediately updates the .properties file in-memory and changing
the .properties file updates the designer.

Copy needed libraries (JGoodies Forms, TableLayout, etc) to the project and add them to the
classpath of the current Eclipse project. Optionally include source code and javadoc.

Integrated with Eclipse's Version Control Systems.

Integrated into refactoring: Copy, rename, move or delete .jfd files when coping, renaming, moving
or deleting .java files.

User interface

The screenshot below shows the Eclipse main window editing a JFormDesigner form. JFormDesigner adds
the menu to the main menu, which is only visible if a JFormDesigner form editor is active.Form

A JFormDesigner editor consists of:

Toolbar: Located at top of the editor area.

Palette: Located at the left side.

http://www.eclipse.org/

JFormDesigner 5.1 Documentation

- 74 -

Design View: Located at the center.

Structure View: Located in Eclipse's Outline view.

Properties View: Located in Eclipse's Properties view.

Bindings View: Located below the Design view. This view is not visible by default. Click the Show
 button () in the toolbar to make is visible.Bindings View

Error Log View: Automatically opens on errors in a view at the bottom.

Creating new forms

To create a new form, click the () button in the Eclipse toolbar. You canNew JFormDesigner Form
also use (:).Ctrl+Shift+V Mac Shift+Command+V

You can also create new forms in Eclipse's Package Explorer view. First select the destination package or
folder, then invoke Eclipse's command and select , which opens Eclipse's dialog. ThenNew Other New
choose from the list of wizards and click Next to proceed.JFormDesigner Form

If is in the sub menu, you can choose it directly without the need to openJFormDesigner Form New
Eclipse's dialog.New

In the dialog, enter the form name (which is also used as class name),New JFormDesigner Form
choose a superclass, a and set options.layout manager localization

JFormDesigner 5.1 Documentation

- 75 -

Open forms for editing

You can open existing forms the same way as opening any other file in Eclipse. Locate it in Eclipse's
Package Explorer view and double-click it.

Go to Java code / Go to form

JFormDesigner adds a button to Eclipse's main toolbar that enables you to switch quickly from a
JFormDesigner form editor to its Java editor and vice versa. If a form editor is active, then the button is
named (). If a Java editor is active, then it is named (Go to Java code Go to JFormDesigner form

). You can also use (:).Ctrl+Shift+D Mac Shift+Command+D

Code folding

To move the generated code out of the way, JFormDesigner folds it in the Java editor.

Convert NetBeans, IntelliJ IDEA and Abeille forms

You can convert existing NetBeans, IntelliJ IDEA and Abeille forms to JFormDesigner forms. Right-click on
the form file (or any container) and select .Convert to JFormDesigner Form

When converting an IntelliJ IDEA form, JFormDesigner inserts its own generated GUI code into the
existing Java class and removes IntelliJ IDEA's GUI code.

JFormDesigner 5.1 Documentation

- 76 -

Preferences

The JFormDesigner preferences are fully integrated into the Eclipse preferences dialog. Select Window >
 from the menu to open it and then expand the node "JFormDesigner" in the tree. See Preferences

 for details.Preferences

You can also set project specific settings in the Eclipse project dialog. Select fromProject > Properties
the menu to open it and then expand the node "JFormDesigner" in the tree. See for details.Preferences

Keyboard shortcuts

You can assign shortcut keys to some JFormDesigner commands in Eclipse's keys preferences. Select
 to open it. Search for "JFormDesigner" to findWindow > Preferences > General > Keys

JFormDesigner commands.

JFormDesigner 5.1 Documentation

- 77 -

7.2 NetBeans plug-in
This plug-in integrates JFormDesigner into .NetBeans

Benefits

Using this plug-in has following benefits compared to JFormDesigner stand-alone edition:

Fully integrated as editor for JFormDesigner .jfd files. Create and design forms within NetBeans. No
need to switch between applications.

Uses the source folders and classpath of the current NetBeans project. No need to specify them
twice.

The Java code generator updates the .java file in-memory on each change in the designer. You can
design forms and edit its source code without the need to save them (as necessary when using
JFormDesigner stand-alone edition).

Folding and guarding of generated GUI code in Java editor.

Go to event handler method in Java editor.

Two-way synchronization of localized strings in designer and in properties file editors. Changing
localized strings in the designer immediately updates the .properties file in-memory and changing
the .properties file updates the designer.

Automatically add needed libraries (JGoodies Forms, TableLayout, etc) to the project.

Integrated with NetBeans's Version Control Systems.

Integrated into refactoring: Copy, rename, move or delete .jfd files when coping, renaming, moving
or deleting .java files.

User interface

The screenshot below shows the NetBeans main window editing a JFormDesigner form.

A JFormDesigner editor consists of:

Toolbar: Located at top of the editor area.

Palette: Located at the left side.

http://netbeans.org/

JFormDesigner 5.1 Documentation

- 78 -

Design View: Located at the center.

Structure View: Located at the lower left.

Properties View: Located at the right side.

Bindings View: Located below the Design view. This view is not visible by default. Click the Show
 button () in the toolbar to make is visible.Bindings View

Error Log View: Automatically opens on errors in a view at the bottom.

Creating new forms

You can create new forms using NetBeans's command. In the category New File Swing GUI Forms
choose and click Next to proceed.JFormDesigner Form

Open forms for editing

You can open existing forms the same way as opening any other file in NetBeans. Locate it in NetBeans's
Project view and double-click it.

Source / Design

The and toggle buttons in the editor toolbar enable you to switch from a JFormDesignerSource Design
form editor to its Java editor and vice versa.

JFormDesigner 5.1 Documentation

- 79 -

Convert NetBeans, IntelliJ IDEA and Abeille forms

You can convert existing NetBeans, IntelliJ IDEA and Abeille forms to JFormDesigner forms. Right-click on
the form file (or any container) and select .Tools > Convert to JFormDesigner Form

When converting an IntelliJ IDEA form, JFormDesigner inserts its own generated GUI code into the
existing Java class and removes IntelliJ IDEA's GUI code.

Options

JFormDesigner uses the term "Preferences" instead of NetBeans "Options". The JFormDesigner
preferences are fully integrated into the NetBeans options dialog. Select from the menuTools > Options
to open it and then select the "JFormDesigner" page. See for details.Preferences

You can also set project specific options in the NetBeans project dialog. Select File > Project Properties
from the menu to open it and then expand the node "JFormDesigner" in the tree. See forPreferences
details.

Keyboard shortcuts

You can assign shortcut keys to some JFormDesigner commands in NetBeans keymap options. Select
 to open it. Click on the Category column to sort key bindings by categoryTools > Options > Keymap

name and scroll to the JFormDesigner category.

Unsupported features

Following features from other editions are not supported by the NetBeans plug-in:

Use look and feels in view.Design

JFormDesigner 5.1 Documentation

- 80 -

7.3 IntelliJ IDEA plug-in
This plug-in integrates JFormDesigner into (Community and Ultimate Editions).Jetbrains IntelliJ IDEA

Benefits

Using this plug-in has following benefits compared to JFormDesigner stand-alone edition:

Fully integrated as editor for JFormDesigner .jfd files. Create and design forms within IntelliJ IDEA.
No need to switch between applications.

Uses the source folders and classpath of the current IntelliJ IDEA project/module. No need to specify
them twice.

The Java code generator updates the .java file in-memory on each change in the designer. You can
design forms and edit its source code without the need to save them (as necessary when using
JFormDesigner stand-alone edition).

Folding of generated GUI code in Java editor.

Go to event handler method in Java editor.

Two-way synchronization of localized strings in designer and in properties file editors. Changing
localized strings in the designer immediately updates the .properties file in-memory and changing
the .properties file updates the designer.

Copy needed libraries (JGoodies Forms, TableLayout, etc) to the project and add them to the
classpath of the current IntelliJ IDEA project/module. Optionally include source code and javadoc.

Assign shortcut keys to most JFormDesigner commands in IntelliJ IDEA's keymap settings.

Integrated with IntelliJ IDEA's Version Control Systems.

User interface

The screenshot below shows the IntelliJ IDEA main window editing a JFormDesigner form.

A JFormDesigner editor consists of:

Toolbar: Located at top of the editor area.

Palette: Located at the left side.

Design View: Located at the center.

http://www.jetbrains.com/
http://www.jetbrains.com/idea/

JFormDesigner 5.1 Documentation

- 81 -

Structure View: Located at the upper right. You can hide this view in the editor and show it instead

in IntelliJ IDEA's Structure tool window by unselecting ().Show Structure in Editor

Properties View: Located at the lower right.

Bindings View: Located below the Design view. This view is not visible by default. Click the Show
 button () in the toolbar to make is visible.Bindings View

Error Log View: Automatically opens on errors in a tool window at the bottom. This view is not
visible in the above screenshot.

Creating new forms

You can create new forms in any of IntelliJ IDEA's project views. First select the destination package or
folder, then invoke IDEA's command and choose .New JFormDesigner Form

In the dialog, enter the form name (which is also used as class name),New JFormDesigner Form
choose a superclass, a and set options.layout manager localization

Open forms for editing

You can open existing forms the same way as opening any other file in IntelliJ IDEA. Locate it in any of
IntelliJ IDEA's project views and double-click it.

Go to Java code / Go to form

JFormDesigner adds a button to IntelliJ IDEA's main toolbar that enables you to switch quickly from a
JFormDesigner form editor to its Java editor and vice versa. If a form editor is active, then the button is
named (). If a Java editor is active, then it is named (Go to Java code Go to JFormDesigner form

). You can also use (:).Ctrl+Shift+D Mac Shift+Command+D

JFormDesigner 5.1 Documentation

- 82 -

Code folding

To move the generated code out of the way, JFormDesigner folds it in the Java editor.

Convert IntelliJ IDEA, NetBeans and Abeille forms

You can convert existing IntelliJ IDEA, NetBeans and Abeille forms to JFormDesigner forms. Right-click on
the form file (or any container) and select .Convert to JFormDesigner Form

When converting an IntelliJ IDEA form, JFormDesigner inserts its own generated GUI code into the
existing Java class and removes IntelliJ IDEA's GUI code.

Settings

JFormDesigner uses the term "Preferences" instead of IntelliJ IDEA's "Settings". The JFormDesigner
preferences are fully integrated into the IntelliJ IDEA settings dialog. Select from theFile > Settings
menu to open it and then click the item named "JFormDesigner" in the "IDE Settings" area. To set project
specific settings, select the item named "JFormDesigner (Project)" in the "Project Settings" area. See

 for details.Preferences

Keyboard shortcuts

You can assign shortcut keys to most JFormDesigner commands in IntelliJ IDEA's keymap settings. Select
 to open it. In the actions tree expand File > Settings > Keymap All Actions > Plug-ins >

.JFormDesigner

JFormDesigner 5.1 Documentation

- 83 -

7.4 JBuilder plug-in
This plug-in integrates JFormDesigner into JBuilder 2006. For JBuilder 2007 (or later) use the Eclipse

. For JBuilder 2005 use JFormDesigner 4.plug-in

Benefits

Using this plug-in has following benefits compared to JFormDesigner stand-alone edition:

Fully integrated as editor for JFormDesigner .jfd files. Create and design forms within JBuilder. No
need to switch between applications.

Uses the source folders and classpath of the current JBuilder project. No need to specify them twice.

The Java code generator updates the .java file in-memory on each change in the designer. You can
design forms and edit its source code without the need to save them (as necessary when using
JFormDesigner stand-alone edition).

Folding of generated GUI code in Java editor.

Go to event handler method in Java editor.

Two-way synchronization of localized strings in designer and in properties file editors. Changing
localized strings in the designer immediately updates the .properties file in-memory and changing
the .properties file updates the designer.

Copy needed libraries (JGoodies Forms, TableLayout, etc) to the project and add them to the
classpath of the current JBuilder project. Optionally include source code and javadoc.

Convert JBuilder forms (jbInit() methods) to JFormDesigner .jfd files.

User interface

The screenshot below shows the JBuilder main window editing a JFormDesigner form.

A JFormDesigner editor consists of:

Toolbar: Located at top of the editor area.

Palette: Located at the left side.

Design View: Located at the center.

JFormDesigner 5.1 Documentation

- 84 -

Structure View: Located at the lower left.

Properties View: Located at the right side.

Bindings View: Located below the Design view. This view is not visible by default. Click the Show
 button () in the toolbar to make is visible.Bindings View

Error Log View: Automatically opens on errors in a tool window at the bottom. This view is not
visible in the above screenshot.

Creating new forms

You can create new forms using JBuilder's object gallery. Click the arrow in the toolbar and choose New
.JFormDesigner Form

In the dialog, enter the form name (which is also used as class name),New JFormDesigner Form
choose a superclass, a and set options.layout manager localization

Open forms for editing

You can open existing forms the same way as opening any other file in JBuilder. Locate it in JBuilder's
project view and double-click it.

Go to Java code / Go to form

JFormDesigner adds a button to JBuilder's main toolbar that enables you to switch quickly from a
JFormDesigner form editor to its Java editor and vice versa. If a form editor is active, then the button is
named (). If a Java editor is active, then it is named (Go to Java code Go to JFormDesigner form

).

JFormDesigner 5.1 Documentation

- 85 -

Code folding

To move the generated code out of the way, JFormDesigner folds it in the Java editor.

Convert JBuilder forms

You can convert existing JBuilder forms to JFormDesigner forms. Right-click on the Java file and select
.Convert to JFormDesigner Form

Note: JFormDesigner inserts its own generated GUI code into the existing Java class, but does not
remove JBuilder's GUI code. You have to remove JBuilder's component variables and initialization code
yourself.

Preferences

The JFormDesigner preferences are fully integrated into the JBuilder preferences dialog. Select Tools >
 from the menu to open it. See for details.Preferences Preferences

Unsupported features

Following features from other editions are not supported by the JBuilder plug-in:

Convert NetBeans, IntelliJ IDEA and Abeille forms to JFormDesigner forms.

Use look and feels in view.Design

Import and export of preferences.

JFormDesigner 5.1 Documentation

- 86 -

8 Layout Managers
Layout managers are an essential part of Swing forms. They lay out components within a container.
JFormDesigner provides support for following layout managers:

BorderLayout

BoxLayout

CardLayout

FlowLayout

FormLayout (JGoodies)

GridBagLayout

GridLayout

GroupLayout (Free Design)

HorizontalLayout (SwingX)

IntelliJ IDEA GridLayout

null Layout

TableLayout

VerticalLayout (SwingX)

How to choose a layout manager?

For use either one of the grid-based layout managers (, or "normal" forms FormLayout TableLayout
) or use "Free Design" (). Each layout manager has its advantages andGridBagLayout GroupLayout

disadvantages. FormLayout and TableLayout are open source and require that you ship an additional
library with your application.

FormLayout has the most features (dialog units, column/row alignment, column/row grouping), but
may have problems if a component span multiple columns or rows and can not handle right-to-left
component orientation.

TableLayout does not have these limitations, but has fewer features than FormLayout.

GridBagLayout is the weakest of these three grid-based layout managers, but JFormDesigner hides
its complexity and adds additional features like gaps. Use GridBagLayout if you cannot use
FormLayout or TableLayout.

GroupLayout (Free Design) allows you to lay out your forms by simply placing components where
you want them. Visual guidelines suggest optimal spacing, alignment and resizing of components.

For use , , or .button bars FormLayout TableLayout GridBagLayout FlowLayout

To layout a , use . Place the toolbar to the north, the status bar to the southmain window BorderLayout
and the content to the center.

For use , which has its own layout manager (based on BoxLayout).toolbars JToolBar

For , may be a good choice. Mainly because has a gapradio button groups BoxLayout JRadioButton
between its text and its border and therefore the gaps provided by FormLayout, TableLayout and
GridBagLayout are not necessary.

JFormDesigner 5.1 Documentation

- 87 -

Change layout manager

You can change the layout manager at any time. Either in the view or by right-clicking on aProperties
container in the or view and selecting the new layout manager from the popup menu.Design Structure

JFormDesigner 5.1 Documentation

- 88 -

8.1 BorderLayout
The border layout manager places components in up to five areas: center, north, south, east and west.
Each area can contain only one component.

(absolute positioning) (left-to-right relative positioning) (right-to-left relative positioning)

The components are laid out according to their preferred sizes. The north and south components may be
stretched horizontally. The east and west components may be stretched vertically. The center component
may be stretched horizontally and vertically to fill any space left over.

In addition to absolute positioning, BorderLayout supports relative positioning, which swaps west and
east components if the component orientation of the container is set to right-to-left. To use relative
positioning, first add a component to one of the four side areas and then change the layout constraints
property of that component to PAGE_START, PAGE_END, LINE_START or LINE_END.

BorderLayout is part of the standard Java distribution.

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description Default

horizontal gap The horizontal gap between components. 0

vertical gap The vertical gap between components. 0

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints
:properties

Property Name Description

constraints Specifies where the component will be placed. Possible values: CENTER, NORTH, SOUTH,
EAST, WEST, PAGE_START, PAGE_END, LINE_START and LINE_END.

JFormDesigner 5.1 Documentation

- 89 -

8.2 BoxLayout
The box layout manager places components either vertically or horizontally. The components will not
wrap as in .FlowLayout

This layout manager is used rarely. Take a look at the BoxLayout API documentation for more details
about it.

BoxLayout is part of the standard Java distribution.

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description

axis The axis to lay out components along. Possible values: X_AXIS, Y_AXIS, LINE_AXIS and
PAGE_AXIS.

JFormDesigner 5.1 Documentation

- 90 -

8.3 CardLayout
The card layout manager treats each component in the container as a card. Only one card is visible at a
time. The container acts as a stack of cards. The first component added to a card layout is the visible
component when the container is first displayed.

CardLayout is part of the standard Java distribution.

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description Default

horizontal gap The horizontal gap at the left and right edges. 0

vertical gap The vertical gap at the top and bottom edges. 0

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints
:properties

Property Name Description

Card Name Identifier that can be used to make a card visible. See API documentation for
.CardLayout.show(Container, String)

JFormDesigner 5.1 Documentation

- 91 -

8.4 FlowLayout
The flow layout manager arranges components in a row from left to right, starting a new row if no more
components fit into a row. Flow layouts are typically used to arrange buttons in a panel.

FlowLayout is part of the standard Java distribution.

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description Default

alignment The alignment of the layout. Possible values: LEFT, RIGHT, CENTER, LEADING
and TRAILING.

CENTER

horizontal gap The horizontal gap between components and between the component and the
border of the container.

5

vertical gap The vertical gap between components and between the component and the
border of the container.

5

align on baseline
(Java 6)

Specifies whether components are vertically aligned along their baseline.
Components that do not have a baseline are centered.

false

JFormDesigner 5.1 Documentation

- 92 -

8.5 FormLayout (JGoodies)
FormLayout is a powerful, flexible and precise general purpose layout manager. It places components in
a grid of columns and rows, allowing specified components to span multiple columns or rows. Not all
columns/rows necessarily have the same width/height.

Unlike other grid-based layout managers, FormLayout uses 1-based column/row indices. And it uses
"real" columns/rows as gaps. Therefore the unusual column/row numbers in the above screenshot. Using
gap columns/rows has the advantage that you can give gaps different sizes.

Use the column and row to insert or delete columns/rows and change column/row properties.headers
JFormDesigner automatically adds/removes gap columns if you add/remove a column/row.

Compared to other layout managers, FormLayout provides following outstanding features:

Default alignment of components in a column/row.

Specification of minimum and maximum column width or row height.

Supports different units: Dialog units, Pixel, Point, Millimeter, Centimeter and Inch. Especially Dialog
units are very useful to create layouts that scale with the screen resolution.

Column/row templates.

Column/row grouping.

FormLayout is open source and part of the standard Java distribution. You must ship annot
additional library with your application. JFormDesigner includes , jgoodies-forms.jar

 and in its folder. For morejgoodies-forms-javadoc.zip jgoodies-forms-src.zip redist
documentation and tutorials, visit or .www.jgoodies.com forms.java.net

The API documentation is also available here: .doc.formdev.com/jgoodies-forms/

: If you use FormLayout the first time, the JFormDesigner IDE plug-in ask you whetherIDE plug-ins
it should copy the required library (and its source code and documentation) to the IDE project and
add it to the classpath of the IDE project.

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description

columnSpecs Comma separated encoded column specifications. This property is for experts only. Use the
 instead of editing this property.column header

rowSpecs Comma separated encoded row specifications. This property is for experts only. Use the row
 instead of editing this property.header

http://www.jgoodies.com/
http://forms.java.net/
http://doc.formdev.com/jgoodies-forms/

JFormDesigner 5.1 Documentation

- 93 -

Column/row properties

Each column and row has its own properties. Use the column and row to change column/rowheaders
properties.

Field Description

Column/Row The index of the column/row. Use the arrow
buttons (or , , , Alt+Left Alt+Right Alt+Up

 keys) to edit the properties of theAlt+Down
previous or next column/row.

Template FormLayout provides several predefined
 for columns and rows. Here you cantemplates

choose one.

Specification The column/row specification. This is a string
representation of the options below.

Default
alignment

The default alignment of the components within a
column/row. Used if the value of the component
constraint properties "h align" or "v align" are set
to DEFAULT.

Size The width of a column or height of a row. You
can use default, preferred or minimum
component size. Or a constant size. It is also
possible to specify a minimum and a maximum
size. Note that the maximum size does not limit
the column/row size if the column/row can grow
(see resize behavior).

Resize
behavior

The resize weight of the column/row.

Grouping See for details.column/row grouping

Tip: The column/row context menu allows you to alter many of these options for multi-selections.

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints
:properties

Property Name Description Default

grid x Specifies the component's horizontal grid origin (column index). 1

grid y Specifies the component's vertical grid origin (row index). 1

grid width Specifies the component's horizontal grid extend (number of columns). 1

grid height Specifies the component's vertical grid extend (number of rows). 1

h align The horizontal alignment of the component within its cell. Possible values:
DEFAULT, LEFT, CENTER, RIGHT and FILL.

DEFAULT

v align The vertical alignment of the component within its cell. Possible values:
DEFAULT, TOP, CENTER, BOTTOM and FILL.

DEFAULT

insets Specifies the external padding of the component, the minimum amount of
space between the component and the edges of its display area.
Note that the insets do not increase the column width or row height (in contrast
to the GridBagConstraints.insets).

0,0,0,0

Tip: The component context menu allows you to alter the alignment for multi-selections.

JFormDesigner 5.1 Documentation

- 94 -

8.5.1 Column/Row Templates

FormLayout provides several predefined templates for columns and rows. You can also define custom
 in the dialog.column/row templates Preferences

Column templates

Name Description Gap

default Determines the column width by computing the maximum of all column
component preferred widths. If there is not enough space in the container, the
column can shrink to the minimum width.

no

preferred Determines the column width by computing the maximum of all column
component preferred widths.

no

minimum Determines the column width by computing the maximum of all column
component minimum widths.

no

related gap A logical horizontal gap between two related components. For example the OK
and Cancel buttons are considered related.

yes

unrelated gap A logical horizontal gap between two unrelated components. yes

label component gap A logical horizontal gap between a label and an associated component. yes

glue Has an initial width of 0 pixels and grows. Useful to describe columns thatglue
fill the space between other columns.

yes

button A logical horizontal column for a fixed size button. no

growing button A logical horizontal column for a growing button. no

Row templates

Name Description Gap

default Determines the row height by computing the maximum of all row component
preferred heights. If there is not enough space in the container, the row can
shrink to the minimum height.

no

preferred Determines the row height by computing the maximum of all row component
preferred heights.

no

minimum Determines the row height by computing the maximum of all row component
minimum heights.

no

related gap A logical vertical gap between two related components. yes

unrelated gap A logical vertical gap between two unrelated components. yes

label component gap A logical vertical gap between a label and an associated component.
(requires JGoodies Forms 1.4 or later)

yes

narrow line gap A logical vertical narrow gap between two rows. Useful if the vertical space is
scarce or if an individual vertical gap shall be smaller than the default line gap.

yes

line gap A logical vertical default gap between two rows. A little bit larger than the
narrow line gap.

yes

paragraph gap A logical vertical default gap between two paragraphs in the layout grid. This gap
is larger than the default line gap.

yes

glue Has an initial height of 0 pixels and grows. Useful to describe rows that fillglue
the space between other rows.

yes

JFormDesigner 5.1 Documentation

- 95 -

8.5.2 Column/Row Groups

Column and row groups are used to specify that a set of columns or rows will get the same width or
height. This is an essential feature for symmetric, and more generally, balanced design.

In the above example, columns [1 and 5] and columns [3 and 7] have the same width.

To visualize the grouping, JFormDesigner displays lines connecting the grouped columns/rows near to the
column and row .headers

Group columns/rows

To create a new group, the columns/rows you want to group in the , right-click on aselect header
selected column/row in the header and select from the popup menu.Group

Note that selected gap columns/rows will be ignored when grouping.

You can extend existing groups by selecting at least one column/row of the existing group and the
columns/rows that you want to add to that group, then right-click on a selected column/row and select

 from the popup menu.Group

JFormDesigner 5.1 Documentation

- 96 -

Ungroup columns/lines

To remove a group, all columns/rows of the group, right-click on a selected column/row and select select
 from the popup menu.Ungroup

To remove a single column/row from a group, right-click on it and select from the popup menu.Ungroup

Group IDs

A unique group ID identifies each group. When using the header context menu to group/ungroup, you
don't have to care about those IDs. JFormDesigner manages the group IDs automatically.

However it is possible to edit the group ID in the dialog.Column/row properties

JFormDesigner 5.1 Documentation

- 97 -

8.6 GridBagLayout
The grid bag layout manager places components in a grid of columns and rows, allowing specified
components to span multiple columns or rows. Not all columns/rows necessarily have the same
width/height. Essentially, GridBagLayout places components in rectangles (cells) in a grid, and then uses
the components' preferred sizes to determine how big the cells should be.

Use the column and row to insert or delete columns/rows and change column/row properties.headers

GridBagLayout is part of the standard Java distribution.

Extensions

JFormDesigner extends the original GridBagLayout with following features:

Horizontal and vertical gaps
Simply specify the gap size and JFormDesigner automatically computes the

 for all components. This makes designing a form with consistent gapsGridBagConstraints.insets
using GridBagLayout much easier. No longer wrestling with .GridBagConstraints.insets

With gaps: Without gaps:

Left/top layout alignment
The pure GridBagLayout centers the layout within the container if there is enough space.
JFormDesigner easily allows you to fix this problem by switching on two options: and align left align

.top

With layout alignment: Without layout alignment:

Default component alignment
Allows you to specify a default alignment for components within columns/rows. This is very useful
for columns with right aligned labels because you specify the alignment only once for the column
and all added labels will automatically aligned to the right.

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description Default

horizontal gap The horizontal gap between components. 5

vertical gap The vertical gap between components. 5

align left If true, aligns the layout to the left side of the container. If false, then the
layout is centered horizontally.

true

align top If true, aligns the layout to the top side of the container. If false, then the
layout is centered vertically.

true

JFormDesigner 5.1 Documentation

- 98 -

These four properties are JFormDesigner extensions to the original GridBagLayout. However, no
additional library is required.

Column/row properties

Each column and row has its own properties. Use the column and row to change column/rowheaders
properties.

Field Description

Column/Row The index of the column/row. Use the arrow buttons (or , , , Alt+Left Alt+Right Alt+Up
 keys) to edit the properties of the previous or next column/row.Alt+Down

Default alignment The default alignment of the components within a column/row. Used if the value of the
constraints properties "h align" or "v align" is DEFAULT.

Size The minimum width of a column or height of a row.

Resize behavior The resize weight of the column/row.

Tip: The column/row context menu allows you to alter many of these options for multi-selections.

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints
:properties

Property Name Description Default

grid x Specifies the component's horizontal grid origin (column index). 0

grid y Specifies the component's vertical grid origin (row index). 0

grid width Specifies the component's horizontal grid extend (number of columns). 1

grid height Specifies the component's vertical grid extend (number of rows). 1

h align The horizontal alignment of the component within its cell. Possible values:
DEFAULT, LEFT, CENTER, RIGHT and FILL.

DEFAULT

v align The vertical alignment of the component within its cell. Possible values:
DEFAULT, TOP, CENTER, BOTTOM, FILL, BASELINE (Java 6), ABOVE_BASELINE
(Java 6) and BELOW_BASELINE (Java 6).

DEFAULT

weight x Specifies how to distribute extra horizontal space. 0.0

JFormDesigner 5.1 Documentation

- 99 -

Property Name Description Default

weight y Specifies how to distribute extra vertical space. 0.0

insets Specifies the external padding of the component, the minimum amount of
space between the component and the edges of its display area.

0,0,0,0

ipad x Specifies the internal padding of the component, how much space to add to the
minimum width of the component.

0

ipad y Specifies the internal padding, that is, how much space to add to the minimum
height of the component.

0

In contrast to the GridBagConstraints API, which uses and to specify the alignment andanchor fill
resize behavior of a component, JFormDesigner uses the usual notation.h/v align

Tip: The component context menu allows you to alter the alignment for multi-selections.

JFormDesigner 5.1 Documentation

- 100 -

8.7 GridLayout
The grid layout manager places components in a grid of cells. Each component takes all the available
space within its cell, and each cell is exactly the same size.

This layout manager is used rarely.

GridLayout is part of the standard Java distribution.

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description Default

columns The number of columns. Zero means any number of columns.

rows The number of rows. Zero means any number of rows.
: If the number of rows is non-zero, the number of columns specified isNote

ignored. Instead, the number of columns is determined from the specified
number or rows and the total number of components in the layout.

horizontal gap The horizontal gap between components. 0

vertical gap The vertical gap between components. 0

JFormDesigner 5.1 Documentation

- 101 -

8.8 GroupLayout (Free Design)
The goal of the group layout manager is to make it easy to create professional cross platform layouts. It
is designed for GUI builders, such as JFormDesigner, to use the "Free Design" paradigm. You can lay out
your forms by simply placing components where you want them. Visual guidelines suggest optimal
spacing, alignment and resizing of components.

GroupLayout has been developed by the NetBeans team and is also used by the NetBeans GUI Builder
(formerly Project Matisse). They provide a comprehensive tutorial on designing GUIs using GroupLayout,
which is also suitable for JFormDesigner: http://www.netbeans.org/kb/60/java/quickstart-gui.html

GroupLayout is part of the standard Java distribution since Java 6. If you need to run your application
also on Java 5 or 1.4, you can use the open-source library, which isSwing Layout Extension
compatible to the Java 6 GroupLayout, but uses different package names. Change the option
"GroupLayout Generation Style" in the preferences ifLayout Managers (Java Code Generator)
necessary.

The API documentation is available here: .doc.formdev.com/grouplayout/

: If you use GroupLayout from the library the first time, theIDE plug-ins Swing Layout Extension
JFormDesigner IDE plug-in ask you whether it should copy the required library (and its source code
and documentation) to the IDE project and add it to the classpath of the IDE project.

Alignment guidelines

Alignment guidelines appear only when adding or moving components. They indicate the preferred
positions to which components snap when releasing the mouse button.

Insets are the preferred spacings between components and their container.

Offsets are the preferred spacings between adjacent components.

http://www.netbeans.org/kb/60/java/quickstart-gui.html
http://swing-layout.java.net/
http://doc.formdev.com/grouplayout/
http://swing-layout.java.net/

JFormDesigner 5.1 Documentation

- 102 -

Baseline alignment is the preferred relationship between adjacent components that display text.

Edge alignments (top, bottom, left and right) are possible relationships between adjacent components.

Indentation alignment is a special alignment relationship in which one component is located below
another and offset slightly to the right.

Anchoring indicators

Anchoring indicators appear when components have snapped into position. They illustrate the alignment
and relationship among components.

Anchors connecting components to their container or to adjacent components are represented by small
semi-circular indicators with dashed lines.

JFormDesigner 5.1 Documentation

- 103 -

Commands

The designer provides following GroupLayout specific commands:context menu

Command Description

Align in
column/row

Aligns the selected components left/right/top/bottom/center in column/row.

Align Aligns the selected components left/right/top/bottom.

Anchor Changes the anchoring of the selected components. A component is usually horizontally
anchored left/right and vertically anchored top/bottom. Anchoring connects a component
to a container edge or a neighborhood component edge.

Horizontal Auto
Resizing

Makes the selected components resize horizontally at runtime if the container size
changes.

Vertical Auto
Resizing

Makes the selected components resize vertically at runtime if the container size
changes.

Same Width Makes the selected components all the same width. If one of the selected components is
already in a group of "Same Width" components, the other components are added to the
existing group. To remove components from a group, select them and then execute this
command. Grouped components are marked with a small indicator.

Same Height Makes the selected components all the same height. See "Save Width" command for
more details.

Set Default Size Makes the selected components have its default size.

Space Around
Component

Changes the empty space around the selected component.

Duplicate Duplicates the selected components and places the new components below the original
components. Use , , or keys to place theCtrl+Left Ctrl+Right Ctrl+Up Ctrl+Down
duplicated components left, right, above or below the original components.

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description Default

honors visibility Specifies whether component visibility is considered when positioning and sizing
components. If true, non-visible components are not treated as part of the
layout. If false, components are positioned and sized regardless of visibility.

true

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints
:properties

Property Name Description Default

horizontal size Specifies the component's horizontal size in pixel or Default. If set to Default,
the component's preferred width is used.

Default

vertical size Specifies the component's vertical size in pixel or Default. If set to Default, the
component's preferred height is used.

Default

JFormDesigner 5.1 Documentation

- 104 -

Property Name Description Default

horizontal resizable Specifies whether the component is horizontal resizable. false

vertical resizable Specifies whether the component is vertical resizable. false

top space Specifies the top empty space.

left space Specifies the left empty space.

bottom space Specifies the bottom empty space.

right space Specifies the right empty space.

top space resizable Specifies whether the top empty space is vertical resizable. false

left space resizable Specifies whether the left empty space is horizontal resizable. false

bottom space
resizable

Specifies whether the bottom empty space is vertical resizable. false

right space resizable Specifies whether the right empty space is horizontal resizable. false

JFormDesigner 5.1 Documentation

- 105 -

8.9 HorizontalLayout (SwingX)
The horizontal layout manager places components horizontally. The components are stretched vertically
to the height of the container. The components will not wrap as in .FlowLayout

HorizontalLayout is part of the open source project and part of the standard JavaSwingX not
distribution. You must ship an additional library with your application. The JFormDesigner distribution
does not include the SwingX library. For downloads, documentation and tutorials, visit

 (or).swingx.java.net www.swinglabs.org

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description Default

gap The horizontal gap between components. 0

http://swingx.java.net/
http://swingx.java.net/
http://www.swinglabs.org/

JFormDesigner 5.1 Documentation

- 106 -

8.10 IntelliJ IDEA GridLayout
The IntelliJ IDEA grid layout manager places components in a grid of columns and rows, allowing
specified components to span multiple columns or rows. Not all columns/rows necessarily have the same
width/height.

Note: The IntelliJ IDEA grid layout manager is supported to make it easier to migrate forms, which were
created with IntelliJ IDEA's GUI builder. If you never used it, it is recommended to use one of the other
grid-based layout managers.

Use the column and row to insert or delete columns/rows and change column/row properties.headers
Use horizontal and vertical spacers, which are available in the , to define space betweenPalette
components.

IntelliJ IDEA GridLayout is open source and part of the standard Java distribution. You must shipnot
an additional library with your application. JFormDesigner includes and intellij_forms_rt.jar

 in its folder. For more documentation and tutorials, visit intellij_forms_rt_src.zip redist
.www.jetbrains.com/idea/

: If you use IntelliJ IDEA GridLayout the first time, the JFormDesigner IDE plug-in askIDE plug-ins
you whether it should copy the required library (and its source code) to the IDE project and add it to
the classpath of the IDE project.

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description Default

horizontal gap The horizontal gap between components. If -1, then inherits gap from parent
container that also uses IntelliJ IDEA GridLayout, or uses 10 pixel.

-1

vertical gap The vertical gap between components. If -1, then inherits gap from parent
container that also uses IntelliJ IDEA GridLayout, or uses 5 pixel.

-1

same size horizontally If true, all columns get the same width. false

same size vertically If true, all rows get the same height. false

margin Size of the margin between the containers border and its contents. 0,0,0,0

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints
:properties

Property Name Description Default

grid x Specifies the component's horizontal grid origin (column index). 0

grid y Specifies the component's vertical grid origin (row index). 0

grid width Specifies the component's horizontal grid extend (number of columns). 1

http://www.jetbrains.com/idea/

JFormDesigner 5.1 Documentation

- 107 -

Property Name Description Default

grid height Specifies the component's vertical grid extend (number of rows). 1

fill Specifies how the component fills its cell. Possible values: None, Horizontal,
Vertical and Both.

None

anchor Specifies how the component is aligned within its cell. Possible values: Center,
North, North East, East, South East, South, South West, West and North West.

Center

indent The indent of the component within its cell. In pixel multiplied by 10. 0

align grid with parent If true, align the grid of nested containers, which use IntelliJ IDEA GridLayout,
with the grid of this container.

false

horizontal size policy Specifies how the component affects horizontal resizing behavior. Possible
values: Fixed, Can Shrink, Can Grow, Want Grow and combinations.

Can Shrink
and Can
Grow

vertical size policy Specifies how the component affects vertical resizing behavior. Possible values:
Fixed, Can Shrink, Can Grow, Want Grow and combinations.

Can Shrink
and Can
Grow

minimum size The minimum size of the component. -1, -1

preferred size The preferred size of the component. -1, -1

maximum size The maximum size of the component. -1, -1

JFormDesigner 5.1 Documentation

- 108 -

8.11 null Layout
null layout is not a real layout manager. It means that no layout manager is assigned and the
components can be put at specific x,y coordinates.

It is useful for making quick prototypes. But it is not recommended for production because it is not
portable. The fixed locations an sizes do not change with the environment (e.g. different fonts on various
platforms).

Preferred sizes

JFormDesigner supports preferred sizes of child components. This solves one common problem of null
layout: the component sizes change with the environment (e.g. different fonts on various platforms).
Unlike other GUI designers, no additional library is required.

Grid

To make it easier to align components, the component edges snap to an invisible grid when moving or
resizing components. You can specify the grid step size in the dialog. To temporary disablePreferences
grid snapping, hold down the key while moving or resizing components.Shift

Keyboard

You can move selected components with and change size with .Ctrl+ArrowKey Shift+ArrowKey

Aligning components

The align commands help you to align a set of components or make them same width or height.

The dark blue handles in the above screenshot indicate the first selected component.

Command Description

Align Left Line up the left edges of the selected components with the left edge of the first selected
component.

JFormDesigner 5.1 Documentation

- 109 -

Command Description

Align Center Horizontally line up the centers of the selected components with the center of the first
selected component.

Align Right Line up the right edges of the selected components with the right edge of the first selected
component.

Align Top Line up the top edges of the selected components with the top edge of the first selected
component.

Align Middle Vertically line up the centers of the selected components with the center of the first
selected component.

Align Bottom Line up the bottom edges of the selected components with the bottom edge of the first
selected component.

Same Width Make the selected components all the same width as the first selected component.

Same Height Make the selected components all the same height as the first selected component.

Make Horizontal
Space Equal

Makes the horizontal space between 3 or more selected components equal. The leftmost
and rightmost components stay unchanged. The other components are horizontally
distributed between the leftmost and rightmost components.

Make Vertical
Space Equal

Makes the vertical space between 3 or more selected components equal. The topmost and
bottommost components stay unchanged. The other components are vertically distributed
between the topmost and bottommost components.

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description Default

auto-size If true, computes the size of the container so that all children are entire visible.
If false, the size of the container in the Design view is used.

true

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints
:properties

Property Name Description Default

x The x coordinate of the component relative to the left corner of the
container.

0

y The y coordinate of the component relative to the upper corner of the
container.

0

width The width of the component in pixel or Preferred. If set to Preferred,
the component's preferred width is used.

Preferred

height The height of the component in pixel or Preferred. If set to Preferred,
the component's preferred width is used.

Preferred

JFormDesigner 5.1 Documentation

- 110 -

8.12 TableLayout
The table layout manager places components in a grid of columns and rows, allowing specified
components to span multiple columns or rows. Not all columns/rows necessarily have the same
width/height.

A column/row can be given an absolute size in pixels, a percentage of the available space, or it can grow
and shrink to fill the remaining space after other columns/rows have been resized.

Use the column and row to insert or delete columns/rows and change column/row properties.headers

TableLayout is open source and part of the standard Java distribution. You must ship annot
additional library with your application. JFormDesigner includes , TableLayout.jar

 and in its folder. For more documentationTableLayout-javadoc.jar TableLayout-src.zip redist
and tutorials, visit .tablelayout.java.net

The API documentation is also available here: .doc.formdev.com/tablelayout/

: If you use TableLayout the first time, the JFormDesigner IDE plug-in ask you whetherIDE plug-ins
it should copy the required library (and its source code and documentation) to the IDE project and
add it to the classpath of the IDE project.

Extensions

JFormDesigner extends the original TableLayout with following features:

Default component alignment
Allows you to specify a default alignment for components within columns/rows. This is very useful
for columns with right aligned labels because you specify the alignment only once for the column
and all added labels will automatically aligned to the right.

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description Default

horizontal gap The horizontal gap between components. 5

vertical gap The vertical gap between components. 5

http://tablelayout.java.net/
http://doc.formdev.com/tablelayout/

JFormDesigner 5.1 Documentation

- 111 -

Column/row properties

Each column and row has its own properties. Use the column and row to change column/rowheaders
properties.

Field Description

Column/Row The index of the column/row. Use the arrow
buttons (or , , , Alt+Left Alt+Right Alt+Up

 keys) to edit the properties of theAlt+Down
previous or next column/row.

Default
alignment

The default alignment of the components within
a column/row. Used if the value of the
constraints properties "h align" or "v align" is
DEFAULT.

Size Specifies how TableLayout computes the
width/height of a column/row.

Tip: The column/row context menu allows you to alter many of these options for multi-selections.

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints
:properties

Property Name Description Default

grid x Specifies the component's horizontal grid origin (column index). 0

grid y Specifies the component's vertical grid origin (row index). 0

grid width Specifies the component's horizontal grid extend (number of columns). 1

grid height Specifies the component's vertical grid extend (number of rows). 1

h align The horizontal alignment of the component within its cell. Possible values:
DEFAULT, LEFT, CENTER, RIGHT and FILL.

DEFAULT

v align The vertical alignment of the component within its cell. Possible values:
DEFAULT, TOP, CENTER, BOTTOM and FILL.

DEFAULT

In contrast to the TableLayoutConstraints API, which uses [column1,row1,column2,row2] to specify the
location and size of a component, JFormDesigner uses the usual [x,y,width,height] notation.

Tip: The component context menu allows you to alter the alignment for multi-selections.

JFormDesigner 5.1 Documentation

- 112 -

8.13 VerticalLayout (SwingX)
The vertical layout manager places components vertically. The components are stretched horizontally to
the width of the container.

VerticalLayout is part of the open source project and part of the standard JavaSwingX not
distribution. You must ship an additional library with your application. The JFormDesigner distribution
does not include the SwingX library. For downloads, documentation and tutorials, visit

 (or).swingx.java.net www.swinglabs.org

Layout manager properties

A container with this layout manager has following :layout manager properties

Property Name Description Default

gap The vertical gap between components. 0

http://swingx.java.net/
http://swingx.java.net/
http://www.swinglabs.org/

JFormDesigner 5.1 Documentation

- 113 -

9 Java Code Generator
JFormDesigner can generate and update Java source code. It uses the same name for the Java file as for
the Form file. E.g.:

C:\MyProject\src\com\myproject\WelcomeDialog.jfd (form file)
 (java file)C:\MyProject\src\com\myproject\WelcomeDialog.java

Stand-alone: Before creating new forms, you should specify the locations of your Java insource folders
the dialog. Then JFormDesigner can generate valid statements. For the above example,Project package
you should add .C:\MyProject\src

IDE plug-ins: The source folders of the IDE projects are used.

If the Java file does not exist, JFormDesigner generates a new one. Otherwise it parses the existing Java
file and inserts/updates the code for the form and adds import statements if necessary.

Stand-alone: The Java file will be updated when saving the form file.

IDE plug-ins: If the Java file is opened in the IDE editor, it will be immediately updated in-memory on
each change in JFormDesigner. Otherwise it will be updated when saving the form file.

JFormDesigner uses special comments to identify the code sections that it will generate/update. E.g.:

// JFormDesigner - ... //GEN-BEGIN:initComponents
// JFormDesigner - ... //GEN-END:initComponents

The starting comment must contain , the ending comment .GEN-BEGIN:<keyword> GEN-END:<keyword>
These comments are NetBeans compatible. The text before and (in the same line)GEN-BEGIN GEN-END
does not matter. JFormDesigner uses the following keywords:

Keyword
name

Description

initComponents Used for code that instantiates and initializes the components of the form.

variables Used for code that declares the class level variables for components.

initI18n Used for code that initializes localized component properties if option "Generate
initComponentsI18n() method" is enabled in the preferences or Localization (Java Code Generator)

."(form)" properties

initBindings Used for code that initializes bindings if option "Generate initComponentBindings() method" is
enabled in the preferences or .Localization (Java Code Generator) "(form)" properties

JFormDesigner 5.1 Documentation

- 114 -

9.1 Nested Classes
One of the advanced features of JFormDesigner is the generation of nested classes. Normally, all code for
a form is generated into one class. If you have forms with many components, e.g. a withJTabbedPane
some tabs, it is not recommended to have only one class. If you hand-code such a form, you would
create a class for each tab.

In JFormDesigner you can specify a nested class for each component. You do this in the Code Generation
category in the view. JFormDesigner automatically generates/updates the specified nestedProperties
classes. This allows you to program more object-oriented and makes your code easier to read and
maintain.

Components having a nested class are marked with a overlay symbol in the view.Structure

Example source code:

public NestedClassDemoclass
 extends JPanel
{
 NestedClassDemo public () {
 initComponents ;()
 }

 initComponents private void () {
 // JFormDesigner - Component initialization - DO NOT MODIFY //GEN-BEGIN:initComponents
 tabbedPane = ;new JTabbedPane()
 tab1Panel = Tab1Panel ;new ()
 tab2Panel = Tab2Panel ;new ()

 //======== this ========
 setLayout ;(new BorderLayout())

 //======== tabbedPane ========
 {
 tabbedPane. , tab1Panel ;addTab("tab 1")
 tabbedPane. , tab2Panel ;addTab("tab 2")
 }
 add tabbedPane, . ;(BorderLayout CENTER)
 // JFormDesigner - End of component initialization //GEN-END:initComponents
 }

 // JFormDesigner - Variables declaration - DO NOT MODIFY //GEN-BEGIN:variables
 tabbedPane;private JTabbedPane
 Tab1Panel tab1Panel;private
 Tab2Panel tab2Panel;private
 // JFormDesigner - End of variables declaration //GEN-END:variables

 //---- nested class Tab1Panel ---

 Tab1Panelprivate class
 extends JPanel
 {
 Tab1Panel private () {
 initComponents ;()
 }

 initComponents private void () {
 // JFormDesigner - Component initialization - DO NOT MODIFY //GEN-BEGIN:initComponents
 label2 = ;new JLabel()
 textField1 = ;new JTextField()
 CellConstraints cc = CellConstraints ;new ()

JFormDesigner 5.1 Documentation

- 115 -

 //======== this ========
 setBorder Borders. ;(TABBED_DIALOG_BORDER)
 setLayout FormLayout ... ;(new ())

 //---- label2 ----
 label2. ;setText("text")
 add label2, cc. , ;(xy(1 1))

 //---- textField1 ----
 add textField1, cc. , ;(xy(3 1))
 // JFormDesigner - End of component initialization //GEN-END:initComponents
 }

 // JFormDesigner - Variables declaration - DO NOT MODIFY //GEN-BEGIN:variables
 label2;private JLabel
 textField1;private JTextField
 // JFormDesigner - End of variables declaration //GEN-END:variables
 }

 //---- nested class Tab2Panel ---

 Tab2Panelprivate class
 extends JPanel
 {
 Tab2Panel private () {
 initComponents ;()
 }

 initComponents private void () {
 // JFormDesigner - Component initialization - DO NOT MODIFY //GEN-BEGIN:initComponents
 label3 = ;new JLabel()
 checkBox1 = ;new JCheckBox()
 CellConstraints cc = CellConstraints ;new ()

 //======== this ========
 setBorder Borders. ;(TABBED_DIALOG_BORDER)
 setLayout FormLayout ... ;(new ())

 //---- label3 ----
 label3. ;setText("text")
 add label3, cc. , ;(xy(1 1))

 //---- checkBox1 ----
 checkBox1. ;setText("text")
 add checkBox1, cc. , ;(xy(3 1))
 // JFormDesigner - End of component initialization //GEN-END:initComponents
 }

 // JFormDesigner - Variables declaration - DO NOT MODIFY //GEN-BEGIN:variables
 label3;private JLabel
 checkBox1;private JCheckBox
 // JFormDesigner - End of variables declaration //GEN-END:variables
 }
}

When changing the nested class name in the category, JFormDesigner also renames theCode Generation
nested class in the Java source code. When removing the nested class name, then JFormDesigner does
not remove the nested class in the Java source code to avoid loss of own source code.

JFormDesigner 5.1 Documentation

- 116 -

9.2 Code Templates
When generating new Java files or classes, JFormDesigner uses the templates specified in the Preferences
dialog.

Template name Description

File header Used when creating new Java files. Contains a header comment and a package
statement.

Class Used when generating a new (nested) class. Contains a class declaration, a constructor,
a component initialization method and variable declarations.

Empty Class Used when generating a new empty class. This can happen, if all form components are
contained in nested classes.

Event Handler Body Used for event handler method bodies.

Component Initialization Replaces the variable used in other templates. Contains a${component_initialization}
method named . Invoke this method from your code to instantiate theinitComponents
components of your form. Feel free to change the method name if you don't like it.

Component I18n
Initialization

Used for code that initializes localized component properties if option "Generate
initComponentsI18n() method" is enabled in the Localization (Java Code Generator)
preferences or ."(form)" properties

Component Binding
Initialization

Used for code that initializes bindings if option "Generate initComponentBindings()
method" is enabled in the preferences or Localization (Java Code Generator) "(form)"

.properties

Variables Declaration Replaces the variable used in other templates.${variables_declaration}

java.awt.Dialog Used for classes derived from . Compared to the “Class” template, thisjava.awt.Dialog
has special constructors, which are necessary for derived classes.java.awt.Dialog

java.awt.Frame Used for classes derived from . Equal to the “Class” template, butjava.awt.Frame
necessary because extends , which has its ownjava.awt.Frame java.awt.Window
template and a constructor that is not compatible with .java.awt.Frame

java.awt.Window Used for classes derived from . Compared to the “Class” template, thisjava.awt.Window
has a special constructor, which are necessary for derived classes.java.awt.Window

javax.swing.AbstractAction Used for nested action classes.

You can change the existing templates or create additional templates in the dialog. It isPreferences
possible to define your own templates for specific superclasses.

Following variables can be used in the templates:

Variable name Description Context

${date} Current date. global

${user} User name. global

${package_declaration} package statement. If the form is not saved under one of the source folders
specified in the dialog, the variable is empty (no statementProject package
will be generated).

file
header

${class_name} Name of the (nested) class. class

${component_initialization} See template “Component initialization”. class

${constructor_modifiers} Modifiers of the constructor. Based on the class modifiers. class

${extends_declaration} The declaration of the class; empty if the class has no superclass.extends class

${modifiers} Modifiers of the (nested) class. You can specify the default modifiers in the
 dialog.Preferences

class

${variables_declaration} See template “Variables declaration”. class

JFormDesigner 5.1 Documentation

- 117 -

10 Command Line Tool
The command-line tool allows you to run some commands (e.g. Java code generation) on many forms.

Available commands

Java Code Generation: Usually its not necessary to run the fromJava code generator
command-line because the Java code is automatically generated and updated while editing a form in
JFormDesigner. However in rare cases it is useful to re-generate the Java code of JFormDesigner
forms. E.g. if you want upgrade to JGoodies 1.2, which introduced a new much shorterFormLayout
syntax for encoded column and row specifications.

Externalize strings: If you have to many existing non-localized forms, then this commandlocalize
does the job very quickly.

Convert .jfd file format: Since version 5.1, JFormDesigner supports the compact, easy-to-merge
and fast-to-load persistence format JFDML. This command allows you to convert all your .jfd files
from XML to JFDML and benefit from the new format.

Requirements

You need an installation of the JFormDesigner stand-alone edition. If you usually use one of the IDE
plug-ins, then simply download the stand-alone edition and install it.

Preferences

To specify for the command-line tool, you should create a stand-alone edition , enablepreferences project
and set project specific settings and pass the project .jfdproj file to the command-line tool.

If you usually use the JFormDesigner stand-alone edition and already have a .jfdproj file, then you can
use it for the command-line tool. Otherwise start the JFormDesigner stand-alone edition and create a
new .project

If you don't use a project, then the command-line tool uses the store of the stand-alonepreferences
edition. If you use one of the IDE plug-ins of JFormDesigner, you have to start the stand-alone edition
and set the necessary preferences. To transfer JFormDesigner preferences from an IDE to the
stand-alone edition, you can use the and buttons in the Preferences dialogs. Make sureImport Export
that the preferences are correct because they are not transfered from the IDE.Code Style

Command Line Syntax

Launch the command-line tool as follows, where [] means optional arguments and arguments in italics
must be provided by you.

java -classpath /lib/JFormDesigner.jar<jfd-install>
 com.jformdesigner.application.CommandLineMain
 [--generate|--i18n-externalize|--convert-jfd]
 [--dry-run] [--verbose|-v] [--recursive|-r]
 [<command-specific-options>]
 []<project-path>/MyProject.jfdproj
 or [...]<folder> <path>/MyForm1.jfd

Option Description

-classpath /lib/JFormDesigner.jar<jfd-install> Specifies the JAR that contains the command-line tool. This is a
standard argument of the .Java application launcher

com.jformdesigner.application.CommandLineMain The class name of the command-line tool.

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html

JFormDesigner 5.1 Documentation

- 118 -

Option Description

--generate Generate Java code for the given forms or folders.

--i18n-externalize Externalize strings in the given forms or folders. This requires
that you've specified in the used project.Source Folders

--convert-jfd Convert the given .jfd files to another format.

--dry-run Execute the given command, but do not save modifications. Only
shows what would happen. This option enables --verbose.

--verbose or -v Prints file names of processed .jfd and .java files to the console.

--recursive or -r Recursively process folders.

--bundle-name=<bundleName> Only used for --i18n-externalize.
The used to store strings. You can useresource bundle name
variables {package} (package name of form) and {basename}
(basename of form). Default is "{package}.Bundle", which
creates Bundle.properties in same package as the form. This
option is ignored when processing already localized forms.

--key-prefix=<keyPrefix> Only used for --i18n-externalize.
The . You can use variable {basename}prefix for generated key
(basename of form). Default is "{basename}". This option is
ignored when processing already localized forms.

--auto-externalize=<true|false> Only used for --i18n-externalize.
Set the option in the processed forms. Default isauto-externalize
true.

--format=<JFDML|XML> Only used for --convert-jfd.
The target format into which the .jfd files will be converted.
Default is "JFDML".

--encoding=<encoding> Only used for --convert-jfd.
The encoding used to store JFDML content. See

 for supported encodings. Defaults isjava.nio.charset.Charset
"UTF-8".

--header-comment=<headerComment> Only used for --convert-jfd.
A comment that is stored in the header of the converted .jfd
files. May contain "\n", which is converted to real newline
character.

<project-path>/MyProject.jfdproj Optional JFormDesigner stand-alone edition used toproject
extend the classpath and to specify other . Usefulpreferences
when using custom components.

<folder> or [...]<path>/MyForm1.jfd List of folders or .jfd files. If a folder is specified, all .jfd files in
the folder are processed.

The options and parameters are processed in the order they are passed. An option is always used for
subsequent parameters, but not for preceding ones. E.g. " " processes src1 --recursive src2 src2
recursively, but not . It is also possible to specify options or projects more than once. E.g. "src1

" uses for and project1.jfdproj src1 project2.jfdproj src2 project1.jfdproj src1
 for .project2.jfdproj src2

Using custom components

If you're using custom components (JavaBeans) in your forms, it is necessary to tell the command-line
tool the classpath of your components, because e.g the code generator needs to load the classes of
custom components. There are two options to specify the classpath for your custom components:

JFormDesigner stand-alone edition : The JARs and folders specified on the page inproject Classpath
the project settings are used by the command-line tool. This is the preferred way is you use the
stand-alone edition.

http://docs.oracle.com/javase/7/docs/api/java/nio/charset/Charset.html

JFormDesigner 5.1 Documentation

- 119 -

Classpath of : Simply add your JARs to the -classpath option of the JavaJava application launcher
application launcher. This is the preferred way if you use Ant (see below) or one of the IDE plug-ins
(which don't use JFormDesigner project files).

Examples

Generate code for a single form:

cd C:\MyProject
java -classpath C:\ProgramFiles\JFormDesigner\lib\JFormDesigner.jar
 com.jformdesigner.application.CommandLineMain
 generate -- src/com/myproject/MyForm1.jfd

Generate code for all forms in a project that use custom components:

cd C:\MyProject
java -classpath C:\ProgramFiles\JFormDesigner\lib\JFormDesigner.jar;classes;swingx.jar
 com.jformdesigner.application.CommandLineMain
 generate --recursive -- src

Externalize strings in all forms of the folder and use one bundle file per form and no key prefix:src

cd C:\MyProject
java -classpath C:\ProgramFiles\JFormDesigner\lib\JFormDesigner.jar
 com.jformdesigner.application.CommandLineMain
 i18n-externalize --recursive--
 --bundle-name={package}.{basename} --key-prefix=
 MyProject.jfdproj src

Ant

Although we don't provide a special task for , it is easy to invoke the JFormDesigner command-lineAnt
tool from an Ant script. The <classpath> element makes it easy to specify JARs and folders of custom
components.

<property name="command_line_html__jfd-install-dir" value="C:/Program Files/JFormDesigner"/>

<java classname="command_line_html__com.jformdesigner.application.CommandLineMain"
 fork="true" failonerror="true" logError="true">
 <classpath>
 <pathelement location="${jfd-install-dir}/lib/JFormDesigner.jar"/>
 <pathelement location="myLibrary.jar"/>
 </classpath>
 <arg value="--generate"/>
 <arg value="--recursive"/>
 <arg value="src"/>
</java>

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/java.html
http://ant.apache.org/

JFormDesigner 5.1 Documentation

- 120 -

11 Runtime Library

Note: If you use the Java code generator, you don't need this library.

The open-source (BSD license) runtime library allows you to load JFormDesigner XML files at runtime
within your applications. Turn off the Java code generation in the dialog or in the Preferences Project
settings if you use this library.

You'll find the library in the folder (or plug-in) of the JFormDesignerjfd-loader.jar redist
installation; the source code is in and the documentation is in jfd-loader-src.zip

.jfd-loader-javadoc.zip

The API documentation is also available here: .doc.formdev.com/jfd-loader/

Classes

FormLoader provides methods to load JFormDesigner .jfd files into in-memory form models.

FormCreator creates instances of Swing components from in-memory form models and provides
methods to access components.

FormSaver saves in-memory form models to JFormDesigner .jfd files. Can be used to convert
proprietary form specifications to JFormDesigner .jfd files: first create a in-memory form model from
your form specification, then save the model to a .jfd file.

Example

The following example demonstrates the usage of FormLoader and FormCreator. It is included in the
 distributed with all JFormDesigner editions.examples

public LoaderExampleclass
{
 dialog;private JDialog

 main args public static void (String[]) {
 LoaderExample ;new ()
 }

 LoaderExample () {
 try {
 // load the .jfd file into memory
 FormModel formModel = FormLoader.load(
 ;"com/jformdesigner/examples/LoaderExample.jfd")

 // create a dialog
 FormCreator formCreator = FormCreator formModel ;new ()
 formCreator. ;setTarget(this)
 dialog = formCreator. ;createDialog(null)

 // get references to components
 nameField = formCreator. ;JTextField getTextField("nameField")
 checkBox = formCreator. ;JCheckBox getCheckBox("checkBox")

 // set values
 nameField. ;setText("enter name here")
 checkBox. ;setSelected(true)

 // show dialog
 dialog. ;setModal(true)
 dialog. ;pack()
 dialog. ;show()

 . . nameField. ;System out println(getText())
 . . checkBox. ;System out println(isSelected())
 . ;System exit(0)
 ex } catch(Exception) {

http://doc.formdev.com/jfd-loader/

JFormDesigner 5.1 Documentation

- 121 -

 ex. ;printStackTrace()
 }
 }

 // event handler for checkBox
 checkBoxActionPerformed e private void (ActionEvent) {
 . dialog, ;JOptionPane showMessageDialog("check box clicked")
 }

 // event handler for okButton
 okButtonActionPerformed private void () {
 dialog. ;dispose()
 }
}

JFormDesigner 5.1 Documentation

- 122 -

12 JavaBeans
What is a Java Bean?

A Java Bean is a reusable software component that can be manipulated visually in a builder tool.

JavaBean (components) are self-contained, reusable software units that can be visually composed into
composite components and applications. A bean is a Java class that:

is public and not abstract

has a public "null" constructor (without parameters)

has properties defined by public getter and setter methods.

JFormDesigner supports:

Visual beans (must inherit from).java.awt.Component

Non-visual beans.

BeanInfo

JFormDesigner supports/uses following classes/interfaces specified in the package:java.beans

BeanInfo

BeanDescriptor

EventSetDescriptor

PropertyDescriptor

PropertyEditor (incl. support for custom and paintable editors)

Customizer

If you are writing BeanInfo classes for your custom components, you can specify additional information
needed by JFormDesigner using the extension mechanism.java.beans.FeatureDescriptor

You can also use to specify these attributes without the pain of implementingBeanInfo Annotations
BeanInfo classes.

For examples using BeanInfo Annotations, example implementations of BeanInfo classes and
PropertyEditors, take a look at the .examples

BeanDescriptor Attributes

Following attributes are supported in :BeanDescriptor

Attribute Name Description

isContainer Specifies whether a component is a container or not. A container can have child components.
The value must be a . Default is false. E.g.Boolean

beanDesc.setValue("isContainer", Boolean.TRUE);

containerDelegate If components should be added to a descendant of a container, then it is possible to specify a
method that returns the container for the children. is a exampleJFrame.getContentPane()
for such a method. The value must be a and specifies the name of a method that takesString
no arguments and returns a . E.g.java.awt.Container

beanDesc.setValue("containerDelegate", "getContentPane");

layoutManager Allows the specification of a layout manager, which is used when adding the component to a
form. If specified, then JFormDesigner does not allow the selection of a layout manager. The
value must be a . E.g.Class

http://docs.oracle.com/javase/7/docs/api/java/beans/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/beans/BeanInfo.html
http://docs.oracle.com/javase/7/docs/api/java/beans/BeanDescriptor.html
http://docs.oracle.com/javase/7/docs/api/java/beans/EventSetDescriptor.html
http://docs.oracle.com/javase/7/docs/api/java/beans/PropertyDescriptor.html
http://docs.oracle.com/javase/7/docs/api/java/beans/PropertyEditor.html
http://docs.oracle.com/javase/7/docs/api/java/beans/Customizer.html
http://docs.oracle.com/javase/7/docs/api/java/beans/FeatureDescriptor.html
http://docs.oracle.com/javase/7/docs/api/java/beans/BeanDescriptor.html

JFormDesigner 5.1 Documentation

- 123 -

Attribute Name Description

beanDesc.setValue("layoutManager", BorderLayout.class);

persistenceDelegate Specifies an instance of a class, which extends , that canjava.beans.PersistenceDelegate
be used to persist an instance of the bean. E.g.

beanDesc.setValue("persistenceDelegate",
 new MyBeanPersistenceDelegate());

PropertyDescriptor Attributes

Following attributes are supported in :PropertyDescriptor

Attribute Name Description

category Specifies the property category to which the property belongs. JFormDesigner adds the
specified category to the view. The value must be a .Properties String

propDesc.setValue("category", "My Properties");

enumerationValues Specifies a list of valid property values. The value must be a . For eachObject[]
property value, the must contain three items:Object[]

Name: A displayable name for the property value.

Value: The actual property value.

Java Initialization String: A Java code piece used when generating code.

propDesc.setValue("enumerationValues", new Object[] {
 "horizontal", JSlider.HORIZONTAL, "JSlider.HORIZONTAL",
 "vertical", JSlider.VERTICAL, "JSlider.VERTICAL" });

extraPersistenceDelegates Specifies a list of persistence delegates for classes. The value must be a . ForObject[]
each class, the must contain two items:Object[]

Class: The class for which the persistence delegate should be used.

Persistence delegate: Instance of a class, which extends
, that should be used to persist an instance ofjava.beans.PersistenceDelegate

the specified class.

Use the attribute "persistenceDelegate" (see below) to specify a persistence delegate for
the property value. Use this attribute to specify persistence delegates for classes that
are referenced by the property value. E.g. if a property value references classes
MyClass1 and MyClass2:

propDesc.setValue("extraPersistenceDelegates", new Object[] {
 MyClass1.class, new MyClass1PersistenceDelegate(),
 MyClass2.class, new MyClass2PersistenceDelegate(),
});

imports Specifies one or more class names for which import statements should be generated by
the Java code generator. This is useful if you don't use full qualified class names in

 or . The valueenumerationValues PropertyEditor.getJavaInitializationString()
must be a or . E.g.String String[]

propDesc.setValue("imports", "com.mycompany.MyConstants");
propDesc.setValue("imports", new String[] {
 "com.mycompany.MyConstants",
 "com.mycompany.MyExtendedConstants" });

notMultiSelection Specifies whether the property is not shown in the view when multipleProperties
components are selected. The value must be a . Default is false. E.g.Boolean

propDesc.setValue("notMultiSelection", Boolean.TRUE);

notNull Specifies that a property can not set to in the view. If true, the null Properties Set
 command is disabled. The value must be a . Default is false. E.g.Value to null Boolean

http://docs.oracle.com/javase/7/docs/api/java/beans/PropertyDescriptor.html

JFormDesigner 5.1 Documentation

- 124 -

1.

2.

Attribute Name Description

propDesc.setValue("notNull", Boolean.TRUE);

notRestoreDefault Specifies that a property value can not restored to the default in the view. IfProperties
true, the command is disabled. The value must be a .Restore Default Value Boolean
Default is false. E.g.

propDesc.setValue("notRestoreDefault", Boolean.TRUE);

persistenceDelegate Specifies an instance of a class, which extends , thatjava.beans.PersistenceDelegate
can be used to persist an instance of a property value. E.g.

propDesc.setValue("persistenceDelegate",
 new MyPropPersistenceDelegate());

readOnly Specifies that a property is read-only in the view. The value must be a Properties
. Default is false. E.g.Boolean

propDesc.setValue("readOnly", Boolean.TRUE);

transient Specifies that the property value should not persisted and no code should generated.
The value must be a . Default is false. E.g.Boolean

propDesc.setValue("transient", Boolean.TRUE);

variableDefault Specifies whether the default property value depends on other property values. The
value must be a . Default is false. E.g.Boolean

propDesc.setValue("variableDefault", Boolean.TRUE);

Design time

JavaBeans support the concept of "design"-mode, when JavaBeans are used in a GUI design tool, and
"run"-mode, when JavaBeans are used in an application.

You can use the method in your JavaBean to determine whether itjava.beans.Beans.isDesignTime()
is running in JFormDesigner or in your application.

Reload beans

JFormDesigner automatically reloads classes of custom JavaBeans when changed. So you can change the
source code of used custom JavaBeans, compile them in your IDE and use them in JFormDesigner
immediately without restarting.

You can also manually reload classes:

: Select from the menu or press .Stand-alone View > Refresh Designer F5

IDE plug-ins: Click the button () in the designer tool bar.Refresh Designer

Refresh does following:

Create a new class loader for loading JavaBeans, BeanInfos and Icons.

Recreates the form in the active view.Design

Unsupported standard components

all AWT components

JFormDesigner 5.1 Documentation

- 125 -

13 Annotations
The and annotations make it very easy to specifying BeanInfo information@BeanInfo @PropertyDesc
directly in the custom component. Its no longer necessary to implement extra BeanInfo classes. This
drastically reduces time and code needed to create BeanInfo information.

When using the JFormDesigner annotations, you have to add the library (fromjfd-annotations.jar
 folder) to the build path of your project (necessary for the Java compiler). The documentationredist

is in . It is necessary to distribute withjfd-annotations-javadoc.zip not jfd-annotations.jar
your application.

The API documentation is also available here: doc.formdev.com/jfd-annotations/

@BeanInfo

This annotation can be used to specify additional information for constructing a class and its BeanInfo
.BeanDescriptor

Example for specifying a description, an icon, property display names and flags, and property categories:

@BeanInfo(
 description ,="My Bean"
 icon ,="MyBean.gif"
 properties={
 name , displayName , preferred@PropertyDesc(="magnitude" ="magnitude (in %)" =true)
 name , expert@PropertyDesc(="enabled" =true)
 ,}
 categories={
 name , properties , , ,@Category(="Sizes" ={"preferredSize" "minimumSize" "maximumSize"})
 name , properties , ,@Category(="Colors" ={"background" "foreground"})
 }
)

 MyBean JCompoment ... public class extends { }

Example for a container component that has a content pane:

@BeanInfo(isContainer , containerDelegate=true ="getContentPane")
 MyPanel ... public class extends JPanel { }

@PropertyDesc

This annotation can be used to specify additional information for constructing a .PropertyDescriptor

This annotation may be used in a annotation (see) or may be@BeanInfo @BeanInfo.properties()
attached to property getter or setter methods. If the getter method of a property is annotated, then the
setter method of the same property is not checked for this annotation.

Important: This annotation requires that the annotation is specified for the bean class.@BeanInfo
Otherwise this annotation is ignored when specified at methods.

Example for attaching this annotation to a property getter method:

@PropertyDesc(displayName , preferred="magnitude (in %)" =true)
 getMagnitude public int () {

 magnitudereturn ;
}

http://doc.formdev.com/jfd-annotations/
http://docs.oracle.com/javase/7/docs/api/java/beans/BeanInfo.html
http://docs.oracle.com/javase/7/docs/api/java/beans/BeanDescriptor.html
http://docs.oracle.com/javase/7/docs/api/java/beans/PropertyDescriptor.html

JFormDesigner 5.1 Documentation

- 126 -

Example for specifying this annotation in a annotation:@BeanInfo

@BeanInfo(
 properties={
 name , displayName , preferred@PropertyDesc(="magnitude" ="magnitude (in %)" =true)
 }
)

 MyBean JCompoment ... public class extends { }

@DesignCreate

This annotation can be used to mark a static method that should be invoked by JFormDesigner to create
instances of the bean, which are then used in the JFormDesigner view. The annotated methodDesign
must be static, must not have parameters and must return the instance of created bean.

Example for using this annotation to initialize the bean with test data for the Design view:

public MyBean JCompoment class extends {
 @DesignCreate
 MyBean designCreate private static () {
 MyBean myBean MyBean= new ();
 myBean. SomeDummyDataForDesigning setData(new ());
 myBeanreturn ;
 }
 MyBean public () {
 // ...
 }
}

JFormDesigner 5.1 Documentation

- 127 -

14 JGoodies Forms & Looks
JFormDesigner supports and uses software provided by Karsten Lentzsch.JGoodies

The framework support is very extensive. Not only the layout manager isJGoodies Forms FormLayout
supported, also some important helper classes are supported: , and Borders ComponentFactory

 (com.jgoodies.forms.factories).FormFactory

JGoodies Looks look and feels are built-in so that you can preview your forms using those popular look
and feels. JGoodies Looks examples contains some useful components to build Eclipse like panels:

.JGoodies UIF lite

JGoodies Forms ComponentFactory

The JGoodies Forms ComponentFactory (com.jgoodies.forms.factories) defines three factory methods,
which create components. You find these components in the palette category JGoodies.

Label: A label with an optional mnemonic. The mnemonic and mnemonic index are defined by a
single ampersand (&). For example "&Save" or "Save &As". To use the ampersand itself duplicate it,
for example "Look&&Feel".

Title: A label that uses the foreground color and font of a with an optionalTitledBorder
mnemonic. The mnemonic and mnemonic index are defined by a single ampersand (&).

Titled Separator: A labeled separator. Useful to separate paragraphs in a panel, which is often a
better choice than a .TitledBorder

JGoodies UIF lite

JFormDesigner supports and from the JGoodies UIF lite package,SimpleInternalFrame UIFSplitPane
which is part of the examples. You find both components in the palette categoryJGoodies Looks
JGoodies.

SimpleInternalFrame is an Eclipse like frame. is aUIFSplitPane
subclass of that hides the divider border. Use JSplitPane

 if you want to put two s into aUIFSplitPane SimpleInternalFrame
split pane. See example ./UIFLitePanel.jfdexamples

When using one of these components, you have to add the library /jgoodies-uif-lite.jarredist
to the classpath of your application. Or add the source code to your repository and compile it into
your application. The source code is in .redist/jgoodies-uif-lite-src.zip

The API documentation is also available here: .doc.formdev.com/jgoodies-uif-lite/

: If you use one of the UIF lite components the first time, the JFormDesigner IDEIDE plug-ins
plug-in ask you whether it should copy the required library (and its source code and documentation)
to the IDE project and add it to the classpath of the IDE project.

To add a toolbar to a , add a to the view, select the SimpleInternalFrame JToolBar Design
, select the "toolBar" property in the view and assign the toolbar to it.SimpleInternalFrame Properties

http://www.jgoodies.com/
http://looks.java.net/
http://doc.formdev.com/jgoodies-uif-lite/

JFormDesigner 5.1 Documentation

- 128 -

15 Examples & Redistributables
A JFormDesigner installation includes example source code and redistributable files. Because
JFormDesigner is available in several editions and each IDE plug-in has its own requirements regarding
plug-in directory structure and installation location, the installation location of the examples and
redistributables depends on the JFormDesigner edition. The tables below list the locations for each
JFormDesigner edition.

Examples

The folder (or archive) contains example source code and forms. See examples examples.zip
 for details.examples/README.html

Edition Location

Stand-alone <jformdesigner-install>/examples/

: (right-click on JFormDesigner application andMac OS X <JFormDesigner.app>/examples/
select "Show Package Contents" from the context menu to see contents of
<JFormDesigner.app>)

Eclipse plug-in <eclipse-install>/features/com.jformdesigner_x.x.x/examples.zip or
<eclipse-install>/dropins/JFormDesigner-x.x-eclipse/features/
com.jformdesigner_x.x.x/examples.zip

NetBeans plug-in <netbeans-install>/jformdesigner/examples.zip

: Mac OS X
<NetBeans.app>/Contents/Resources/NetBeans/jformdesigner/examples.zip
(right-click on NetBeans application and select "Show Package Contents" from the context
menu to see contents of <NetBeans.app>)

IntelliJ IDEA plug-in <user-home>/.IntelliJIdeaXX/config/plugins/JFormDesigner/examples.zip or
<intellij-idea-install>/plugins/JFormDesigner/examples.zip

: Mac OS X <user-home>/Library/Application
Support/IntelliJIdeaXX/JFormDesigner/examples.zip

JBuilder plug-in <jbuilder-install>/lib/ext/JFormDesigner/examples.zip

Redistributables

The folder contains the JFormDesigner , the JFormDesigner redist Annotations Library Runtime Library
and 3rd party open source files (layout manager, beans binding, etc). See forredist/README.html
information about licenses.

Edition Location

Stand-alone <jformdesigner-install>/redist/

: (right-click on JFormDesigner application andMac OS X <JFormDesigner.app>/redist/
select "Show Package Contents" from the context menu to see contents of
<JFormDesigner.app>)

Eclipse plug-in <eclipse-install>/plugins/com.jformdesigner.redist_x.x.x/ or
<eclipse-install>/dropins/JFormDesigner-x.x-eclipse/plugins/
com.jformdesigner.redist_x.x.x/

NetBeans plug-in <netbeans-install>/jformdesigner/redist/

: Mac OS X <NetBeans.app>/Contents/Resources/NetBeans/jformdesigner/redist/
(right-click on NetBeans application and select "Show Package Contents" from the context
menu to see contents of <NetBeans.app>)

JFormDesigner 5.1 Documentation

- 129 -

Edition Location

IntelliJ IDEA plug-in <user-home>/.IntelliJIdeaXX/config/plugins/JFormDesigner/redist/ or
<intellij-idea-install>/plugins/JFormDesigner/redist/

: Mac OS X <user-home>/Library/Application
Support/IntelliJIdeaXX/JFormDesigner/redist/

JBuilder plug-in <jbuilder-install>/lib/ext/JFormDesigner/redist/

