JFormDesigner 8.2 Documentation

Copyright © 2004-2023 FormDev Software GmbH. All rights reserved.

Contents

T INEFOAUCTION ettt se e bt et e et e s b e st et e st es s e st es e e st ebeeb e e b e e b e e b e b e s s e st e st es e e st e st e bt ebeeb e be b enbesse st enteseeseebeabesbe b ebanbensenes 2
2 USEI INTEITACE ..ottt bbbttt b b bt 4 b bbbt s et e b E bbbt e e b bbb bRttt b bbbttt et bebebeneaes 3
2.1 IVIBIIUS iR bR SR h R h e R bbb bbb bbb nes 4
2.2 TOOIDAIS ittt ettt b et bttt eb e bbb st h et ekt E bRtk R Ao Rt Rkt E b bR e bRt b e bt e bbb et b st et e bt ene et e b et eren 6
2.3 DBSIZN VIBW .ttt ettt ettt b et h et et e Rt e bt e bR R R R Rk R R e R R R R R Rt e bbbt a e e ne e b e e enes 7
2.3.T HEAGEIS ettt bbb bR bbb h bbb R bbb bbb bbbttt bbb beaes 9
2.3.2 In-place-editing1
2.3.3 Keyboard Navigation .12
2.3.4 IMIENU DESIZNEI ..ttt ettt e e e bt b et a et bt e b e bRt a et b bt s bbb e n et r s n b 12
2.3.5 COIUMN/ROW GIOUPS .uvveuirierinieneieteietestetesessesessesessesessesenessesessesessesessesensesensesessssesessesesesensesensesestasenessesesesensesensesessssensssesensesens 13

2.3.6 Button Groups

2.3.7 JTADDEAPANE ...ttt ettt ettt et e ete e be et e et et et et et eateateae b e bt ehaebeehe b et et eabententeaeeteebeereebeeteebe b etentenes

2.3.8 Events
2.4 Palette
2.5 STFUCTUIE VIBW .ttt bbbttt b e bbb b b e bt e e bt e b b e e bt s b b e b b e b et et e be e bt e bt s b e s b e s b et e b e e e s enis
2.6 PrOPEITIES VIBW ettt ettt ettt d bbbt h et a et h e b et b et e e e e bt b ettt a b e e n bt r e n e ee

2.6.1 Layout Manager Properties

2.6.2 Layout CONSELrAINTS PrOPEITIES ...oc.eiuiviiiiiitiieicietet ettt b bbbttt et b e bbb e bbb s e ens 24

2.6.3 CHENT PIrOPEITIES ...oviieieteuirieierteiert ettt ettt ettt ettt h ettt a st s e b et bt b e e e s e st b st st e b e e e bt e e b et e b e st s b e b et e b e e eb et eb e e ebenensesennenens

2.6.4 Code Generation Properties .

2.6.5 PrOPEITY EAITOIS woouiiiieieieisieirieiestet ettt ettt ettt ettt b e sttt ettt et b et ek et e st bbb e b et e b st ek e st et e st b e b e s ebe st ebe st et e st ebenentesensenens
2.7 BINAINGS VIBW ..ttt bbb bbb bbb bbb bbb b bbbttt
2.8 Error Log View

3 Localization
4 Beans Binding (JSR 295) ..
5 Projects ...cceevmereneennene
6 Preferences
7 IDE Integrations
7.1 Eclipse plug-in
7.2 Intelli) IDEA plug-in ...
7.3 NetBeans plug-in ...
8 Layout Managers
8.1 BorderlLayout
8.2 BoxLayout
8.3 CArTLAYOUL ecviuieieuieieiieietirtei et ettt ettt ettt sttt be st ek et e st e b e st e b e s et e bt e b e st e ben e e b e s et e b et e b e Rtk e Rtk e st Ao R et ek etk e Rt e ke R e b ek e s be e e be e teneee
B4 FIOWLAYOUL .uetiuiieiiieiiriet ettt ettt ettt ettt b ettt b et s et es et b et b st s b e s et e bt eb et e b et e b st b e bt s eb et e b et e b et e b en e et e st et e st beb e s e b et e b ene et eneee
8.5 FormLayout (JGoodies) .
8.6 GIIABAZLAYOUL ..uiiiiiiiiciii ettt b et bbbt b b bbbt b bbbt b bttt
8.7 GIIALAYOUL .evttiniieiiiei ettt ettt h et b bbb et e b e st s b s s e bt eh et ek en e e b st e b e bt e bt e ket b et h Rtk eh et h et ekt be st b e s et e s ee
8.8 GrouplLayout (Free Design) ...
8.9 HorizontalLayout (SwingX)
8.10 INLEIII) IDEA GIIALAYOUL ...veuietiiietiieieiieteierietesteteeet ettt et ettt et st be st sbe s e st e s et ese et e st s be st s aes et ebe e ebensebenesbes et eseneeseneesenenee
8.11 MiglLayout
812 NUITLAYOUL .ttt b et £ bbb b sttt b bbb s et bbb ke b bttt bebebeae sttt st e b bebeneat e e
813 TABIELAYOUL .ttt bbbt b bbb bbb bbb bt
8.14 VerticalLayout (SwingX) ..
O JAVA COUE GENEIALOL ..uviiveecieeieeteeteeteeteeteeeeeteessesttesseesessaeseessesseesseessessaesseessesseesseassesseessesssesseessesseessesssesseesseessesseessesseesseessenseensenseeneas
0.1 NESTEA CIASSES ...uiuiuiiieteieitieirtrist ettt ettt bttt sttt b bt sttt b b b s ottt et b e b b e st e e e b bbb es et e et et e b b sttt et e b e b b e bt sttt st et et ebebent e e
9.2 Code Templates
10 Command Line Tool ...
11 Runtime Library
12 JavaBeans
13 Annotations ...
14 JGoodies FOrmsccccecvvvevuenne.
15 EXaMPIes & REAISIIIDULADIEScoviiciieiiiirieet ettt bbbttt b bttt b bbbttt et et e bt e nea

JFormDesigner 8.2 Documentation

1 Introduction

JFormDesigner is a professional GUI designer for Java Swing user interfaces. Its outstanding support for
MigLayout, JGoodies FormLayout, GroupLayout (Free Design), TableLayout and GridBaglLayout makes it easy to
create professional looking forms.

Why use JFormDesigner?

JFormDesigner makes Swing GUI design a real pleasure. It decreases the time you spend on hand coding forms,
giving you more time to focus on the real tasks. You'll find that JFormDesigner quickly pays back its cost in
improved GUI quality and increased developer productivity. Even non-programmers can use it, which makes it
also ideal for prototyping.

Editions

JFormDesigner is available in four editions: as stand-alone application and as IDE plug-ins for Eclipse, Intelli) IDEA
and NetBeans. This documentation covers all editions.

If there are functional differences between the editions, then they are marked with: Stand-alone, Eclipse plug-in,
Intelli) IDEA plug-in, NetBeans plug-in or IDE plug-ins.

Key features

® Easy and intuitive to use, powerful and productive
® |IDE plug-ins and stand-alone application

MiglLayout support

® GrouplLayout (Free Design) support

® JGoodies FormLayout and TableLayout support
® Advanced GridBaglLayout support

Column and row headers

® Localization support

® Beans Binding (JSR 295) support

BeanInfo Annotations

® Java code generator or runtime library

® Generation of nested classes

JFormDesigner 8.2 Documentation

2 User Interface

This is the main window of JFormDesigner stand-alone edition:

[3] JFormDesigner 6 - MyProject — O X
File Edit View Form Window Help
B -3 Eﬁ@v|ﬂl[ﬁ‘«»‘%@ﬁi|x @v Windows ~ () (no locale) | f§ ~ “@ ? R I
Palette & [E * FormsTutorial ‘ Structure z %
I} Selection Mode E [le 1 [[+ 2 e ?r | E5 (form)
i_iMarquee Selec... a| Leneral =i t Ry SR i [MigLayout]
@ Choose Bean... ; 1= generalSeparator ("General"
R —— 1 Company formData 5] companyLabel ("Company”)
El [T companyField
IpEIJL bel 2 Contact ; pany
abc| JLabel -3 contactLabel ("Contact")
JTextField - 1 mmin a1
[l JComboB 2 Cbropeller o
] JComboBox . =2 |a D
JButt 2| PTIKW] Power [kW] pipeitics R RGO 4
utten - Name | Value
JCheckBox 5 R [mm] D [mm] Name this
(®) JRadioButton Class JPanel
JToggleButton o = 0 Layout Mana... MiglLayout
IJTextArea Bindings (0)
Events (0)
-] JFormattedT... Client Properties (2)
JPasswordFi... I Properties (4)
> Containers 9 _ background [] 240, 240, 240
> Windows g Bindings ++ — ‘ | 1+ 3 ‘ s | X border
> Menus 7 Source | Target | Options foreground H black
. bindingGroup toolTipText
JGoodies 3 .
= — formData - company “# companyField - text Expert Properties (22)
> Binding * formData - contact “ contactField - text Read-only Properties (27)
> Custom 0 Code Generation (13)

The main window consists of the following areas:

® Main Menu: Located at the top of the window.

Toolbar: Located below the main menu.

* Palette: Located at the left side of the window.

* Design View: Located at the center of the window.

® Structure View: Located at the upper right of the window.
* Properties View: Located at the lower right of the window.

Bindings View: Located below the Design view. This view is not visible by default. Click the Show Bindings
View button (“") in the toolbar to make is visible.

® Error Log View: Located below the Design view. This view is not visible in the above screenshot.

2.1 Menus

JFormDesigner 8.2 Documentation

You can invoke most commands from the main menu (at the top of the main frame) and the various context (right-

click) menus.

Main Menu

The main menu is displayed at the top of the JFormDesigner main window of the stand-alone edition.

‘Eile Edit View Form Window Help

File menu
i New Project
&5 Open Project

Reopen Project

X

Project Properties

Close Project

i New Form

= Open Form
Reopen Form
Close
Close All

H Save

= Save As
@ SaveAll

¥ Import

Exit

Edit menu

=~ Undo

~ Redo

3 Cut

& Copy

[Paste
Rename

» Delete

View menu

5 Refresh Designer

[[A Classic Layout
[l Wide Layout

Creates a new project.

Opens an existing project.

Displays a submenu of previously opened projects. Select a project to open it.
Displays the project properties.

Closes the active project.

Creates a new form.

Opens an existing form.

Displays a submenu of previously opened forms. Select a form to open it.
Closes the active form.

Closes all open forms.

Saves the active form and generates the Java source code for the form (if Java Code Generation is
enabled in the Preferences).

Saves the active form under another file name or location and generates the Java source code for
the form (if Java Code Generation is enabled in the Preferences).

Saves all open forms and generates the Java source code for the forms (if Java Code Generation
is enabled in the Preferences).

Imports NetBeans or Intelli] IDEA form files and creates new JFormDesigner forms. Use File >
Save to save the new form in the same folder as the original form file. This also updates the .java
file.

Exits JFormDesigner. Mac: this item is in the JFormDesigner application menu.

Reverses your most recent editing action.

Re-applies the editing action that has most recently been reversed by the Undo action.
Cuts the selected components to the clipboard.

Copies the selected components to the clipboard.

Pastes the components in the clipboard to the selected container of the active form.
Renames the selected component.

Deletes the selected components.

Refresh the Design view of the active form. Reloads all classes used by the form and recreates
the form preview shown in the Design view. You can use this command, if you changed the code
of a component used in the form to reload the component classes. But usually this is not
necessary because JFormDesigner automatically reloads component classes.

Shows Properties view below Structure view.

Shows Properties and Structure views side by side.

Form menu

| =

5
ALl

Test Form

Localize
New Locale
Delete Locale

Externalize Strings

Internalize Strings

Generate Java Code

Window menu

at

Activate Designer
Activate Structure
Activate Properties
Activate Bindings

Activate Error Log

Next Form

Previous Form

Preferences

Help menu

? Help Contents

Tip of the Day

Register

License

Check for Updates

About

Context menus

JFormDesigner 8.2 Documentation

Tests the active form. Creates live instances of the form in a new window. You can close that
window by pressing the Esc key when the window has the focus. If your form contains more
than one top-level component, use the drop-down menu in the toolbar to test another
component.

Edit localization settings, resource bundle strings, create new locales or delete locales.
Creates a new locale.
Deletes an existing locale.

Moves strings to a resource bundle for localization. Use this command to start localizing existing
forms.

Moves strings from a resource bundle into the form and remove the strings from the resource
bundle.

Generates the Java code for the active form. Usually it's not necessary to use this command
because when you save a form, the Java code will be also generated.

Activates the Design view.

Activates the Structure view.

Activates the Properties view.

Activates the Bindings view. By default, the Bindings view is not visible.

Activates the Error Log view. By default, the Error Log view is not visible. It automatically appears
if an error occurs.

Activates the next form.
Activates the previous form.

Opens the Preferences dialog. Mac: this item is in the JFormDesigner application menu.

Displays help topics.

Displays a list of interesting productivity features.

Activates your license.

Displays information about your license.

Checks whether a newer version of JFormDesigner is available.

Displays information about JFormDesigner and the system properties. Mac: this item is in the
JFormDesigner application menu.

Context menus appear when you're right-click on a particular component or control.

Desién view context menu:
[} |

DName: - Properties JE|l8 |2 | QLD_'?
Oo—0O H align: Default < »¢ &> < <« > <a Name Value
Phone: Valign: Default * X lofpiopt E Properties (12, 2 set)
. Dock: (none) * + |« -~ -
ZIP / Cit - , displayedM =7 Restore Default Value
Country: 9 displayedM =N_7 Set Value to null
Set labelFor > enabled b
ind...
Bind > font =
foregroung |))
Add Event Handler > horizontald +8 Externalize String
Morph Bean... icon B Internalize String

Properties view context menu:

2.2 Toolbars

JFormDesigner 8.2 Documentation

Toolbars provide shortcuts to often used commands.

Main Toolbar

This is the toolbar of JFormDesigner stand-alone edition. Many of the commands are also used in the toolbars of

the IDE plug-ins.

RO -E EBD-HE

C5 ™ German (de) v 7 -

i New Project

&5 Open Project

= Project Properties
i New Form

&= OpenForm

E Save
@ SaveAll

> Undo
-~ Redo
3{ Cut

g Copy
[1 Paste
X Delete

pz TestForm

Windows ~

'S Refresh Designer

™8 German (de) -~

i Localize
Show Bindings View

i Generate Java Code

72 Help Contents
[f Cclassic Layout

[Wwide Layout

A X0 X

pzl ~ Windows ~

o;)

A

Creates a new project.

Opens an existing project.
Displays the project properties.
Creates a new form.

Opens an existing form.

Saves the active form and generates the Java source code for the form (if Java Code Generation
is enabled in the Preferences).

Saves all open forms and generates the Java source code for the forms (if Java Code Generation
is enabled in the Preferences).

Reverses your most recent editing action.

Re-applies the editing action that has most recently been reversed by the Undo action.

Cuts the selected components to the clipboard.

Copies the selected components to the clipboard.

Pastes the components in the clipboard to the selected container of the active form.

Deletes the selected components.

Tests the active form. Creates live instances of the form in a new window. You can close that
window by pressing the Esc key when the window has the focus. If your form contains more
than one top-level component, use the drop-down menu to test another component.

Allows you to change the look and feel of the components in the Design view.

Refresh the Design view of the active form. Reloads all classes used by the form and recreates
the form preview shown in the Design view. You can use this command, if you changed the
code of a component used in the form to reload the component classes. But usually this is not

necessary because JFormDesigner automatically reloads component classes.

Allows you to change the locale of the form in the Design view. "(no locale)" is show if the form
is not localized. Use Form > Externalize Strings to start localizing a form.

Edit localization settings, resource bundle strings, create new locales or delete locales.
Shows the Bindings view.

Generates the Java code for the active form. Usually it's not necessary to use this command
because when you save a form, the Java code will be also generated.

Displays help topics.
Shows Properties view below Structure view.

Shows Properties and Structure views side by side.

JFormDesigner 8.2 Documentation

2.3 Design View
This view is the central part of JFormDesigner. It displays the opened forms and lets you edit forms.

[E5 FormsTutorial [55] AddressPanel
> 0 © 1 - 2 © 3

General

[

Company

[SHIe o

Contact

[

Propeller

PTI [kW] Power [kW]

[N Y

R [mm] D [mm]

Stand-alone: At top of the view, tabs are displayed for each open form. Click on a tab to activate a form. To close a

form, click the * symbol that appears on the right side of a tab if the mouse is over it. An asterisk (*) in front of
the form name indicates that the form has been changed.

IDE plug-ins: The Design view is integrated into the IDEs, which have its own tabs.

On the top and left sides of the view, you can see the column and row headers. These are important controls for
grid-based layout managers. Use them to insert, delete or move columns/rows and change column/row properties.

In the center is the design area. It displays the form, grids and handles. You can drag and drop components,
resize, rename, delete components or in-place-edit labels.

Selecting components

To select a single component, click on it. To select multiple components, hold down the Ctrl (Mac: Command) or
Shift key and click on the components. To select the parent of a selected component, hold down the Alt key (Mac:
Option key) and click on the selected component.

To select components in a rectangular area, select Marquee Selection in the Palette and click-and-drag a
rectangular selection area in the Design view. Or click-and-drag on the free area in the Design view. All
components that lie partially within the selection rectangle are selected.

Propeller

E% PTI([H kW
KW wer

: s

0 R [mm D [mm]

O o

The selection in the Design view and in the Structure view is synchronized both ways.

Drag feedback

JFormDesigner provides four types of drag feedback.

ZIP / City: Name: "North
+ West % East
% Phone:
= o

ZIP / City:

The gray figure shows the outline of the dragged components. It always follows the mouse location. The green
figure indicates the drop location, the yellow figure indicates a new column/row and red figures indicate occupied
areas.

JFormDesigner 8.2 Documentation

Cursor feedback
JFormDesigner uses various cursors while dragging components:

The dragged components will be moved to the new location.

S5
%-i- Either add a new component to the form or copy existing components.
%_I_ Add multiple components of the same type to the form.

%G It is not possible to drop the component at this location.

Add components
To add components, choose a component from the Palette and drop it to the location where you want to add it.

To add multiple instances of a component, hold down the Ctrl key (Mac: Command key) while clicking on the
Design view.

Move or copy components

To move components simply drag them to the new location. You will get reasonable visual feedback during the
drag operation.

column 2, row 4

To copy components, proceed just as moving components, but hold down the Ctrl key (Mac: Option key) before
dropping the components.

You can cancel all drag operations using the Esc key.

Resize components

Use the selection handles to resize components. Click on a handle and drag it.

Name: B
Phone: e i
=) -

ZIP / City: \width 2, height 1 (+1, 0)]

The green feedback figure indicates the new size of the component. The tool tip provides additional information
about location, size and differences.

Whether a component is resizable or not depends on the used layout manager.

Morph components

The "Morph Bean" command allows you to change the class of existing components without loosing properties,
events or layout information. Right-click on a component in the Design or Structure view and select Morph Bean
from the popup menu.

Nest in Container

The "Nest in Container" command allows you to nest selected components in a new container (usually a JPanel).
Right-click on a component in the Design or Structure view and select Nest in JPanel from the popup menu. The

JFormDesigner 8.2 Documentation

new container gets the same layout manager as the old container and is placed at the same location where the
selected components were located. For grid-based layout managers, the new container gets columns and rows
and the layout constraints of the selected components are preserved.

<0 &1 & 2 <0 & 1

= L] L] L]
o Align: IO left | Orightr]
]]]

Non-visual beans

To add a non-visual bean to a form, select it in the Palette (or use Choose Bean) and drop it into the free area of
the Design view. Non-visual beans are shown in the Design view using proxy components.

[5l * AddressPanel
] L]
D
addressObject
]]

Red beans

If a bean could not be instantiated (class not found, exception in constructor, etc), a red bean will be shown in the
designer view as placeholder.

com.myapp.MyPanel om.myapp.MyLabel

To fix such problems, take a look at the Error Log view and if necessary add required jars to the classpath of your
project.

2.3.1 Headers

The column and row headers (for grid-based layout managers) show the structure of the layout. This includes
column/row indices, alignment, growing and grouping.

< 0 < 1 © 2 |xd
% Name:
i‘ Phone:

Use them to insert, delete or move columns/rows and change column/row properties. Right-clicking on a column
/row displays a popup menu. Double-clicking shows a dialog that allows you to edit the column/row properties.

udlbl = =2 If a column width or row height is zero, which is the case if a column/row is empty, then
2| lisd JFormDesigner uses a minimum column width and row height. Columns/rows having a
5
i minimum size are marked with a light-red background in the column/row header.
4a
1

Selecting columns/rows

You can select more than one column/row. Hold down the Ctrl key (Mac: Command key) and click on another
column/row to add it to the selection. Hold down the Shift key to select the columns/rows between the last
selected and the clicked column/row.

JFormDesigner 8.2 Documentation

Insert column/row

Right-click on the column/row where you want to insert a new one and select Insert Column / Insert Row from
the popup menu. The new column/row will be inserted before the right-clicked column/row. To add a column/row
after the last one, right-click on the area behind the last column/row.

If the layout manager is FormLayout, an additional gap column/row will be added. Hold down the Shift key before
selecting the command from the popup menu to avoid this.

Besides using the popup menu, you can insert new columns/row when dropping components on column/row
gaps or outside of the existing grid. In the first figure, a new row will be inserted between existing rows. In the
second figure, a virtual grid is shown below/right to the existing grid and a new row will be added.

<0 © 1 “0 © 1
% Name: ﬁ Name:
i a

Ph%: Phone:
1 + 1

By
+

column O, row 2

Delete columns/rows

Right-click on the column/row that you want delete and select Delete Column / Delete Row from the popup
menu.

If the layout manager is FormLayout, an existing gap column/row beside the removed column/row will also be
removed. Hold down the Shift key before selecting the command from the popup menu to avoid this.

Split columns/rows

Right-click on the column/row that you want split and select Split Column / Split Row from the popup menu.

If the layout manager is FormLayout, an additional gap column/row will be added. Hold down the Shift key before
selecting the command from the popup menu to avoid this.

Move columns/rows

The headers allow you to drag and drop columns/rows (incl. contained components and gaps). This allows you to

swap columns or move rows in seconds. Click on a column or row and drag it to the new location. JFormDesigner
updates the column/row specification and the locations of the moved components.

If the layout manager is FormLayout, then existing gap columns/rows are also moved. Hold down the Shift key
before dropping a column/row to avoid this.

-10-

JFormDesigner 8.2 Documentation

Resize columns/rows

To change the (minimum) size of a column/row, click near the right edge of a column/row and drag it.

&0 B <t o 2 b
4 .
0 Neme: width 80 (+25)
37 Phone: Hint: Press Ctrl to set minimum size
5| ZIP / City:

FormLayout supports minimum and constant column/row sizes. Hold down the Ctrl key to change the minimum
size. TableLayout supports only constant sizes and GridBaglLayout supports only minimum sizes.

Header symbols

Following symbols are used in the headers:

Column Header
€ Left aligns components in the column.
»¢ Center components in the column.
> Right aligns components in the column.
© Fill (expand) components into the column.
« Left or right aligns components in the column depending on container's orientation (left-to-right or right-to-left).
2 Right or left aligns components in the column depending on container's orientation (left-to-right or right-to-left).

<a Aligns components (usually labels) to left, center or right depending on platform style guide. E.g. right align on Mac and
left align on other platforms.

b Grow column width.

Row Header

) Top aligns components in the row.

>

Center components in the row.
+v Bottom aligns components in the row.
¢ Fill (expand) components into the row.

a Baseline aligns components in the row.

|ow

Aligns components above baseline in the row.

Aligns components below baseline in the row.

ol

T Grow row height.

2.3.2 In-place-editing

In-place-editing allows you to edit the text of labels and other components directly in the Design view. Simply
select a component and start typing. JFormDesigner automatically displays a text field that allows you to edit the
text.

T &) [Window Titlef | — O X T

You can also use the Space key or double-click on a component to start in-place-editing. Confirm your changes
using the Enter key, or cancel editing using the Esc key.

Ctrl+double-click opens dialog to edit text property.

-11 -

JFormDesigner 8.2 Documentation

In-place-editing is available for all components, which support one of the properties textWithMnemonic, text
or title.

In-place-editing is also supported for the title of TitledBorder and the tab titles of JTabbedPane.

—
General Pptions Advanced

Name:

TitledBorder : double-click on the title of the TitledBorder; or select the component with the TitledBorder
and start in-place-editing as usual.

JTabbedPane: double-click on the tab title; or single-click on the tab, whose title you want to edit and start in-
place-editing as usual.

2.3.3 Keyboard Navigation

Keyboard navigation allows you to change the selection in the designer view using the keyboard. This allows you
for example to edit a bunch of labels using in-place-editing without having to use the mouse. You can use the
following keys:

Key Description

Up move the selection up
Down move the selection down
Left move the selection left
Right move the selection right
Home select the first component
End select the last component

Note: Keyboard navigation is currently limited to one container. You cannot move the selection to another
container using the keyboard.

2.3.4 Menu Designer

The menu designer makes it easy to create and modify menu bars and popup menus. It supports in-place-editing
menu texts and drag-and-drop menu items.

Menu bar structure

JMenu JMenu JMenu This figure shows the structure of a menu bar. The horizontal bar on
el top of the image is a JMenuBar that contains JMenu components. The
JMenu N JMenuItem JIMenu contains JMenuItem, JCheckBoxMenuItem,

L :
JMenultern JRadioButtonMenuItem or Menu Separator components. To create a
[L]

- sub-menu, put a JMenu intoa JMenu.

The component palette provides a category "Menus" that contains all components necessary to create menus.

-12 -

JFormDesigner 8.2 Documentation
Creating menu bars
To create a menu bar:

1. add a JMenuBar toa JFrame
2. add JMenus to the IMenuBar and
3. add JMenuItems tothe IMenus

Select the necessary components in the Palette and drop them to the Design view.

L - O X S R S I R
! % | j:add menus here :I: [|Lj S I
- T
s - O X s — O X L — O X
text [text. [text
add menu items here ladd v N ‘ . text
NS
= Lo
index 0
e

You can freely drag and drop the various menu components to rearrange them.

Creating popup menus

To create a popup menu:

1. add a JPopupMenu to the free area in the Design view and
2. add JIMenuItems tothe JPopupMenu

[E5 HelpPopupMenu2x

Name: Undo

Redo

E Actions‘ D:add menu items here

Assign popup menus to components

You can assign a popup menu to a component in the properties view using the "componentPopupMenu"
property. Select the component to which you want attach the popup menu and assign it in the Properties view.

Note that you must expand the Expert Properties category to see the property. Or use search as in the
screenshot below.

Properties .LE lé lg |Q ‘ _D.V
popup x
Name | Value
=] Expert Properties (35, 2 matches, 1 set)
campanen (default) v
InheritsPopupMenu (default)
(none)

=8 popupMenu

-13-

JFormDesigner 8.2 Documentation

2.3.5 Column/Row Groups

Column and row groups (MigLayout and FormLayout only) are used to specify that a set of columns or rows will
get the same width or height. This is an essential feature for symmetric, and more generally, balanced design.

> 0 < 1 - 2 i 3
T i T |

2 General
‘% Company
Z
2

Contact

&)

Propeller
2 PTI [kW] Power [kW]
% R [mm] D [mm]

In the above example, columns [0 and 2] and columns [1 and 3] have the same width.

To visualize the grouping, JFormDesigner displays lines connecting the grouped columns/rows near to the column
and row headers.

Group columns/rows

To create a new group, select the columns/rows you want to group in the header, right-click on a selected column
/row in the header and select Group from the popup menu.

& 1 > Trailing
2 General <a Label
% Company Resize behavior
% Contact P Grow
Group
4 Propeller Ungroup %
3 PTI[kW] Power [K
Gaps >
s R[mm] D [m
Properties...

Note that selected gap columns/rows will be ignored when grouping (FormLayout only).

You can extend existing groups by selecting at least one column/row of the existing group and the columns/rows
that you want to add to that group, then right-click on a selected column/row and select Group from the popup
menu.

Ungroup columns/lines

To remove a group, select all columns/rows of the group, right-click on a selected column/row and select Ungroup
from the popup menu.

To remove a single column/row from a group, right-click on it and select Ungroup from the popup menu.

Group IDs

A unique group ID identifies each group. When using the header context menu to group/ungroup, you don't have
to care about those IDs. JFormDesigner manages the group |Ds automatically.

However, it is possible to edit the group ID in the MigLayout or FormLayout Column/row properties dialog.

-14-

JFormDesigner 8.2 Documentation

2.3.6 Button Groups

Button groups (javax.swing.ButtonGroup) are used in combination with radio buttons to ensure that only one
radio button in a group of radio buttons is selected.

referred ‘ ‘ -
gfninimum Oleft Ogenter Oright ©f&
Oarow
Q Pixt_?|_ _ k@default LC) preferred |~ O minimum_C
O PEFFSH%QE O constant [}

To visualize the grouping, JFormDesigner displays lines connecting the grouped buttons.

Group Buttons

To create a new button group, select the buttons you want to group, right-click on a selected button and select
Group Buttons from the popup menu.

|
H align: Default ¢ »¢ > &
Valign: Default © X + &

Bind
Add Event Handler >
Morph Bean...

Nest in JPanel

Group Buttons
Ungroup Buttons %

You can extend existing button groups by selecting at least one button of the existing group and the buttons that
you want to add to that group, then right-click on a selected button and select Group Buttons from the popup
menu.

Note that the Group Buttons and Ungroup Buttons commands are only available in the context menu if the
selection contains only components that are derived from JToggleButton (JRadioButton and JCheckBox).

Ungroup Buttons

To remove a button group, select all buttons of the group, right-click on a selected button and select Ungroup
Buttons from the popup menu.

To remove a button from a group, right-click on it and select Ungroup Buttons from the popup menu.

ButtonGroup object

Button groups are non-visual beans. They appear at the bottom of the Structure view and in the Design view.
JFormDesigner automatically creates and removes those objects. You can rename button group objects.

[«
¥ [«

| Structure
= |:| sizePanel [FormLayout]
. @ defaultSizeButton ("&default")
@ prefSizeButton ("&preferred ")
- @ minSizeButton ("minim&um")
P @ constSizeButton ("c&onstant”)

-15-

JFormDesigner 8.2 Documentation

If a grouped button is selected, you can see the association to the button group in the Properties view.

Properties .LE lé l% |Q ‘ 9_7
Name | Value

Name prefSizeButton

Class JxRadioButton

Button Group sizeGroup k

2.3.7 JTabbedPane
JTabbedPane is a container component that lets the user switch between pages by clicking on a tab.

After adding a JTabbedPane to your form, it looks like this one:

Add panels/components to create
tabs. To change a tab title,
double-click at the tab.

To add pages, select an appropriate component (e.g. JPanel) in the palette, move the cursor over the tabs area of
the JTabbedPane and click to add it.

text text

| els/components to create . +
“tabs. Th chanae a tab title, T

he tab.

You can see only the components of the active tab. Click on a tab to switch to another page. To change a tab title,
double-click on a tab to in-place-edit it. You can edit other tab properties (tool tip text, icon, ...) in the Properties
view. Select a page component (e.g. JPanel) to see its tab properties.

Properties I=ls |2 |Q ‘ 4
Name | Value \
Name generalPanel
Class JPanel
Layout Manager (1... MigLayout

Tab Title General
Tab ToolTip

Tab Icon

Tab Disabled Icon

Tab Mnemonic

Tab Mnemonic Index -1

Tab Enabled Mtrue
Tab Background

Tab Foreground

To change the tab order, select a page component (e.g. JPanel) and drag it over the tabs to a new place. You can
also drag and drop page components in the Structure view to change its order.

text text text

s

-

11

1

-16-

JFormDesigner 8.2 Documentation

Use an empty border to separate the page contents from the JTabbedPane border. If you are using MigLayout, it's
recommended to use Layout Insets. For JGoodies Forms use border TABBED_DIALOG. Otherwise, use an
EmptyBorder.

text text text text

text§ § text g:s:g
text bext

2.3.8 Events

Components can provide events to signal when activity occurs (e.g. button pressed or mouse moved).
JFormDesigner shows events in the Events category in the Properties view.

Properties 158 |2 ‘ Q|
Name Value

Name browseButton

Class JButton

Bindings (0)
[=] Events (1) -

actionPerformed (browseButtonActio... | + - |—

[=] Properties (13, 1 set)

IDE plug-ins: Click on the Go to Method button (*) to go to the event handler method in the Java editor of the
IDE.

Add Event Handlers

To add an event handler to a component, right-click on the component in the Design or Structure view and select
Add Event Handler from the popup menu. Or click the Add Event button () in the Properties view. The events
popup menu lists all available event listeners for the selected components and is divided into three sections:
preferred, normal and expert event listeners.

O O |

O Browse...

[m}] Bind >
Add Event Handler >« ActionListener - actionPerformed... %
Morph Bean...

Changelistener - stateChanged...

Nest in JPanel - .
ltemListener - itemStateChanged...

36 Cut Ctrl+X PropertyChangelistener - propertyChange...
[copy Ctrl+C Expert
= .
Paste Ctrl+y 410 Ancestorlistener >

The @ icon in the popup menu indicates that the listener interface will be implemented (e.g. javax.swing.
Changelistener). The @ icon indicates that the listener adapter class will be used (e.g. java.awt.event.
FocusAdapter for java.awt.event.FocusListener). The icons @ and © are used when the listener is already
implemented.

-17 -

JFormDesigner 8.2 Documentation

After selecting an event listener from the popup menu, you can specify the name of the handler method and
whether listener methods should be passed to the handler method in following dialog.

If you add a PropertyChangelListener, you

|£ Add Event Handler X i T
can also specify a property name (field is not
Add an event handler to selected components visible in screenshot). Then the listener is added
Specify the name of the handler method. USing the method
addPropertyChangelListener (String
Listener class: java.awt.event.ActionListener propertyName, PropertyChangelListener

listener).
Listener method: |actionPerformed (ActionEvent)

Handler method: | button1ActionPerformed - The "Go to handler method in Java editor" check

x is only available in the IDE plug-ins.
[“]Pass listener method parameters to handler method box is only available in the plug-ins

[~]Go to handler method in Java editor

Stand-alone: After saving the form, go to your favorite IDE and implement the body of the generated event
handler method.

If you use the Runtime Library and the Java code generator is disabled, you must implement the handler method
yourself in the target class. See documentation of method FormCreator.setTarget() intheJFormDesigner
Loader API for details.

Remove Event Handlers

To remove an event handler, click the Remove Event button (=). Or right-click on the event and select Remove
Event from the popup menu.

Change Handler Method Name

You can either edit the method name directly in the property table or click the ellipsis button () to open the Edit
Event Handler dialog where you can edit all event options.

-18-

JFormDesigner 8.2 Documentation

2.4 Palette

The component palette provides quick access to commonly used components (JavaBeans) available for adding to
forms.

Palette N The components are organized in categories. Click on a category header to expand or
I Selection Mode collapse a category.
E:-'_;_Marquee Selection . .
@ Choose Bean... You can add a new component to the form in following ways:
Ig;“:':?ents 23 # Select a component in the palette, move the cursor to the Design or Structure view
ol Shane and click where you want to add the component.
[T]] JTextField
[=] JComboBox # Select Choose Bean, enter the class name of the component in the Choose Bean
E——— . dialog, click OK, move the cursor to the Design or Structure view and click where you
[Panel want to add the component.
[3TabbedPane To add multiple instances of a component, hold down the Ctrl key (Mac: Command key)
[3scrollPane . A P . P ! y ’ y
while clicking on the Design or Structure view.
Windows 6
Menus 7 The component palette is fully customizable. Right-click on the palette to add, edit, remove
JGoodies 3 or reorder components and categories. Or use the Palette Manager.
Binding 3
Custom 0

Toolbar commands

& Palette Manager Opens the Palette Manager dialog to customize the palette.

Palette Manager

This dialog allows you to fully customize the component palette. You can add, edit, remove or reorder
components and categories.

[3] Palette Manager X

Manage the palette

Add, edit, remove and rearrange categories and beans.

Palette items:

[
» |«

= Swing Palette New Category...
[=}-[&] Components

- [5d] JLabel (javax.swing.JLabel)

III] JTextField (javax.swing.JTextField)
[[¥] JComboBox (javax.swing.JComboBox) Edit...
[CK] JButton (javax.swing.JButton)
Containers Remove

Add Beans...

Windows
Menus
JGoodies
Binding

ol [] [
Y [l [l [P [P o

Custom

Use drag and drop to rearrange items.

-19-

JFormDesigner 8.2 Documentation

Choose Bean

You can use any component that follows the JavaBean specification in JFormDesigner. Select Choose Bean in the
palette to open the Choose Bean dialog.

Here you can search for classes. Enter the first few characters of the class you want to choose until it appears in
the matching classes list. Then select it in the list and click OK.

Following pattern kinds are supported:

® Wildcards: "*" for any string; "?" for any character; terminating "<" or " " (space) prevents implicit trailing "*"

Camel case: "/B" for classes containing "/" and "B" as upper-case letters in camel-case notation, e.g. JButton
or JideButton; "DaPi" for classes containing "Da" and "Pi" as parts in camel-case notation, e.g. DatePicker

The matching classes list displays all classes that match. It is separated into up to three sections:

History matches: classes found in the history of last used classes. If the search field is empty, the complete
history is displayed. To delete a class from the history, select it and press the Delete key or right-click on it
and select Delete from the popup menu.

* Project matches: classes found in the Classpath specified in the current Project.

* Palette matches: classes found in the palette.

[3] choose Bean X

Choose a JavaBean

Select the class name of a JavaBean that you want to add to the form.

Search for class name (? = any character, * = any String, or camel case):
jbyl x

Matching classes: Filter: JavaBean, Swing ¥

History matches (1)
€) PBu
Project matches (2)
JBusyIndicator (com.formdev.toolkit.swing)
JButton (javax.swing)
Palette matches (1)
C) JButton (javax.swing)

Is container

[[]Add to palette category: = Custom New...

? | Classpath Info Cancel Classpath...

Filter Menu Options

Use Filter Classes are hidden if they do not match the filter. E.g. if the JavaBean filter is active and the class is
not public or does not have a public constructor.

Show Interfaces Includes interfaces in the list of matching classes.
The Is Container check box allows you to specify whether a bean is a container or not.

If you select Add to palette category, the component will be added to the palette category specified in the
following field. Click the New button to create a new category for your components if necessary.

Stand-alone: Use the Classpath button to specify the location of your component classes. Add your JAR files or
class folders.

IDE plug-ins: The classpath specified in the IDE project is used to locate component classes.

-20-

JFormDesigner 8.2 Documentation

2.5 Structure View

This view displays the hierarchical structure of the components in a form.

| Structure = == Each component is shown in the tree with an icon, its name and
5 (form) additional information like layout manager class or the text of a label or
=+-[@ this [MigLayout] button. The name must be unique within the form and is used as
[namelLabel ("Name:") variable name in the generated Java code.
- [T nametField
& phoneLabel ("Phone:") You can edit the name of the selected component in the tree by
- |CIT1 phoneField pressing the F2 key. Right-click on a component to invoke commands
s zipCityLabel ("ZIP / City:") from the context menu.
-~ [zipField
[T cityField The selection in the Structure view and in the Design view is
I countryLabel (*Country:") nchronized both ways
--[T countryField sy ys.

bindingGroup (5 bindings)

The tree supports multiple selection. Use the Ctrl key (Mac: Command key) to add individual selections. Use the
Shift key to add contiguous selections.

The tree supports drag and drop to rearrange components. You can also add new components from the palette to
the Structure view. Besides the feedback indicator in the structure tree, JFormDesigner also displays a green
feedback figure in the Design view to show the new location.

| Structure Z =5
£ (form)
=+ popupMenu [JPopupMenu]

Cut E| cutltem ("Cut")

Copy 5] copyltem ("Copy")

Paste E| pasteltem ("Paste") " <=

Various overlay icons are used in the tree to indicate additional information:

c The component is bound to a Java class. Each component can have its own (nested) class. See Nested Classes for
details.

The component has bindings assigned to it. The bindings are shown in Bindings view and in the Bindings category in
the Properties view.

-+ The component has events assigned to it. The events are shown in the Events category in the Properties view.
J The component has custom code assigned to it. See Code Generation properties.

The variable modifier of the componentis set to public.See Code Generation properties.

The variable modifier of the component is set to default.

The variable modifier of the componentis setto protected.

The variable modifier of the component is setto private.

o A property (e.g. JLabel.labelFor) of the component has a reference to a non-existing component. This can happen
if you e.g. remove a referenced JTextField.In the above screenshot, the component phoneLabe'l has an invalid
reference.

Toolbar commands

= Expand All Expand all nodes in the structure tree.

= Collapse All Collapse all nodes in the structure tree.

-21 -

2.6 Properties View

JFormDesigner 8.2 Documentation

The Properties view displays and lets you edit the properties of the selected component(s). Select one or more
components in the Design or Structure view to see its properties. If more than one component is selected, only
properties that are available in all selected components are shown.

The properties table displays the component name, component class, layout manager and constraints properties,
bindings, events, client properties, component properties and code generation properties. The list of component
properties comes from introspection of the component class (JavaBeans).

Properties 5 1 Q Properties are organized in categories, which you can expand/collapse
by clicking on the category name or on the small arrow icons. The
Name Value number of properties in a category and the number of set properties is
Name nameField displayed near the category name.
Class JTextField
Layout Constr... cell 10 The category names of component property categories (Properties,

Expert Properties, etc) are displayed in blue color.

Bindings (1
L editable checkBox - selec... . .
Events () Different font styles are used for the property names. Bold style is used
focusLost nameFieldFocusLost for preferred (often used) properties, plain style for normal properties

Client Properties (2

and italic style for expert properties. Read-only properties are shown
using a gray font color.

Properties (9, 1set

background [] #fafaf2 The white background indicates unset properties. The shown values are
columns 20 the default values of the component. The light green background
editable false indicates set properties. Java code will be generated for set properties
enabled e only. Use Restore Default Value (©) to unset a property. Use Set
font cegoe Ul Value to null from the popup menu to set a property explicitly to null.
foreground M black
horizontalAlig... LEADING A small arrow (=) near the property name indicates that the property is
text bound.

— toolTipText

Expert Properties (35)
Read-only Properties (39
Code Generation (13

Use Group by Category (+) to organize component properties into three predefined categories (normal, expert

and read-only) and custom categories (defined in BeanInfo). Group by Defining Type (+1) organizes component
properties into defining types (e.g. JTextField, JTextComponent, JComponent, Container, Component). Alphabetical

(+2) shows all component properties in one category.

Changing property values

The left column displays the property names, the right column the property values. Click on a property value to
edit it.

labelFor

toolTipText

You can either edit a value directly in the property table or use a custom property editor by clicking on the ellipsis

button () on the right side or pressing the F3 key. The custom editor pops up in a new dialog. The flag button (**
), which is only available for localized forms and string properties, allows you to choose existing strings from the
resource bundle of the form.

The type of the editor depends on the data type of the property. JFormDesigner has built-in property editors for all
standard data types.

-22 -

JFormDesigner 8.2 Documentation

For numbers, a spinner editor makes it easier to increase or decrease the value using the arrow buttons or Up
and Down keys. Press the Enter key to confirm the change; or the Esc key to cancel it.

background [] 240, 240, 240
20 B
editable [Jfalse

Search for property names

To filter the list of shown properties, select the Show Filter (Q) toolbar button. This shows a text field below the
toolbar, where you can enter your filter criteria. Use space, comma or semicolon as separator for multiple
property names.

| Properties J=/ls |2 ‘ Q|

col edj x
Name Value

[l Properties (9, 2 matches)
columns 0
editable true

[=] Expert Properties (35, 4 matches)
carelColor M black

disabledTextColor Ml 109, 109, 109

Common properties and categories

Property/Category Description

Name The name of the component. Must be unique within the form. Used as variable name in the
generated Java code. It is also possible to specify a different variable name in the Code Generation
category.

Class The class name of the component. The tooltip displays the full class name and the class hierarchy.

Click on the value to morph the component class to another class (e.g. JTextField to JTextArea).

Button Group The name of the button group assigned to the component. This property is only visible for
components derived from JToggleButton (e.g. JRadioButton and JCheckBox).

Layout Manager Layout manager properties of the container component. The list of layout properties depends on the
used layout manager. This property is only visible for container components. Click on the value to
change the layout manager.

Layout Constraints Layout constraints properties of the component. The list of constraints properties depends on the
layout manager of the parent component. This property is only visible if the layout manager of the
parent component uses constraints.

Bindings Bindings of the component.
Events Events of the component.
Client Properties Client properties of the component. This property is only visible if there are client properties defined

in the Client Properties preferences.

Code Generation Code Generation properties of the component.

"(form)" properties

Select the "(form)" node in the Structure view to modify special form properties:

Property Name Description
Form file format The format used to persist the form. See also "Form file format" option in General preferences.

Set Component Names If true, invokes java.awt.Component.setName() on all components of the form.

-23-

JFormDesigner 8.2 Documentation

2.6.1 Layout Manager Properties

Each container component that has a layout manager has layout properties. The list of layout properties depends
on the used layout manager.

Select a container component in the Design or Structure view to see its layout properties in the Properties view.

| Properties lg lé l'g ‘Q|9~7
Name Value
Name this
Class JPanel
Layout Constraints hidemode 3
Insets panel
Gaps
h align Default
v align Default
Fill
Hide Mode Ignore (3)
Flow Y [false
right-to-left [false
bottom-to-top [talse
Visual Padding [Atrue
Column Constraints [fillJ[fill]
'~ Row Constraints [0011
Rindinnac '

This screenshot shows layout manager properties of a container that has a MigLayout.

When you add a container component to a form, following dialog appears and you can choose the layout manager
for the new container. You can also set the layout properties in this dialog.

[3] New JPanel X

Create a new JPanel

Choose a layout manager and set initial properties.

Layout manager: MigLayout v

MigLayout options

Number of columns: 25

Number of rows: ki=

Insets: tl br v Gaps: Xy

Horizontal alignment: Default v Fill: (none) v
Vertical alignment: Default v Hide mode: = Ignore (3) v

2.6.2 Layout Constraints Properties

Layout Constraints properties are related to layout managers. Some layout managers (MigLayout, FormLayout,
TableLayout, GridBaglLayout, ...) use constraints to associate layout information (e.g. grid x/y) to the child
components of a container.

The list of constraints properties depends on the layout manager of the parent component.

-24-

JFormDesigner 8.2 Documentation

Select a component in the Design or Structure view to see its constraints properties in the Properties view.

| Properties ,LE l,é g ‘Q|E7
Name Value
Name labell
Class JLabel
Grid Bounds x0 y0 wl hi
Cell x0 y0
Span
h align Default
v align Default
Width
Height
Gaps
Padding
Dock
— Tag
Rindinac /n

This screenshot shows constraints properties of a component in a MigLayout.

2.6.3 Client Properties

What is a client property?

Swings base class for all components, javax.swing.JComponent, provides following methods that allows you to
set and get user-defined properties:

public final Object getClientProperty(Object key);
public final void putClientProperty(Object key, Object value);

Some Swing components use client properties to change their behavior. E.g. for JLabel you can disable HTML
display with label.putClientProperty("html.disable", Boolean.TRUE); You can use client properties
to store any information in components. Visit Finally... Client Properties You Can Use on Ben Galbraith's Blog for a
use case.

Define client properties

You can define client properties on the Client Properties page in the Preferences dialog.

Edit client properties

If you've defined client properties, JFormDesigner shows them in the Properties view, where you can set the values
of the client properties.

Properties .LE .Lé g ‘Q| 27
Name Value
Client Properties (2, 2 set)

html.disable Mtrue

styleClass smallButton

-25.-

https://blog.bengalbraith.com/2006/04/13/finally-client-properties-you-can-use/

JFormDesigner 8.2 Documentation

2.6.4 Code Generation Properties

This category contains properties related to the Java code generator.

| Properties ,LE lé % ‘ Q|
Name Value
=] Code Generation (13, 1 set)
Nested Class Na...
Variable Name namelabel
Variable Modifiers private
Use Local Variable [/]true
Gen. Getter Met... []false
Component
Property Name Description

Nested Class Name

Variable Name

Variable Modifiers

Use Local Variable

Gen. Getter Method
Variable Annotations
Type Parameters

Custom Create

Custom Creation Code
Pre-Creation Code
Post-Creation Code
Pre-Initialization Code

Post-Initialization Code

The name of the generated nested Java class. See Nested Classes for details.

The variable name of the component used in the generated Java code. By default, it is equal to the
component name.

The modifiers of the variable generated for the component. Allowed modifiers: public, default,
protected, private, static and transient. Defaultis private.

If true,the variable is declared as local in the initialization method. Otherwise, at class level. Default
is false.

If true, generate a public getter method for the component. Defaultis false.
Annotations of component variable.
Parameters of component type. E.g. MyTypedBean<String>.

If true, create component in createUIComponents() method. Useful if you want use component
factories for or non-default constructors. JFormDesigner generates the createUlComponents()
method, but no component instantiation code. It is your responsibility to add code to
createUIComponents().

Custom code for creation of the component.

Code included before creation of the component.
Code included after creation of the component.
Code included before initialization of the component.

Code included after initialization of the component.

-26-

JFormDesigner 8.2 Documentation

"(form)" properties

Select the "(form)" node in the Structure view to modify special form properties:

Property Name

Generate Java Source
Code

Default Variable
Modifiers

Default Use Local
Variable

Default Gen. Getter
Method

Default Event Handler
Modifiers

Member Variable Prefix

Use 'this' for member
variables

118n Initialization
Method

118n 'getBundle’
Template

118n 'getString'
Template

118n 'translate’
Template

118n Key Constants
Class

Binding Initialization
Method

MigLayout: API
Constraints

Description

If true, generate Java source code for the form. Defaults to "Generate Java source code" option in the
Java Code Generator preferences.

The default modifiers of the variables generated for components. Allowed modifiers: public,
default, protected, private, static and transient. Defaultis private.

If true, the componentvariables are declared as local in the initialization method. Otherwise, at
class level. Defaultis false.

If true, generate public getter methods for components. Defaultis false.

The default modifiers used when generating event handler methods. Allowed modifiers: public,
default, protected, private, final and static.Defaultis private.

Prefix used for component member variables. E.g. "m_

If enabled, the code generator inserts 'this.' before all member variables. E.g. this.nameLabel.
setText("Name:");

If enabled, the code generator puts the code to initialize the localized texts into a method
initComponentsl18n(). You can invoke this method from your code to switch the locale of a form at
runtime.

Template used by code generator for getting a resource bundle. Default is ResourceBundle.
getBundle (${bundleName})

Template used by code generator for getting a string from a resource bundle. Default is
${bundle}.getString(${key})

Template used by code generator to translate a string into another locale (e.g. i18n.tr (${value})
for Gettext Commons library).

The name of a class that contains constants for resource keys.
If enabled, the code generator puts the code to create bindings into a method
initComponentBindings().

If enabled, then MigLayout API is used to create constraints. Otherwise, strings are used.

-27 -

JFormDesigner 8.2 Documentation

2.6.5 Property Editors

Property editors are used in the Properties view to edit property values.

labelFor
text
toolTipText

You can either edit a value directly in the property table or use a custom property editor by clicking on the ellipsis
button () on the right side. The custom editor pops up in a new dialog.

The type of the editor depends on the data type of the property. JFormDesigner has built-in property editors for all
standard data types. Custom JavaBeans can provide their own property editors. Take a look at the API
documentation of java.beans.PropertyEditor, java.beans.PropertyDescriptor and java.beans.
BeanInfo and the JavaBeans topic for details.

Built-in property editors
JFormDesigner has built-in property editors for following data types:

® String, String[], boolean, byte, char, double, float, int, long, short, java.lang.Boolean,
java.lang.Byte, java.lang.Character, java.lang.Class, java.lang.Double, java.lang.
Float, java.lang.Integer, java.lang.Long, java.lang.Short, java.math.BigDecimal and
java.math.BigInteger

ActionMap (javax.swing)

* Border (javax.swing)

Color (java.awt)

® ComboBoxModel (javax.swing)
Cursor (java.awt)

Dimension (java.awt)

* Font (java.awt)

|con (javax.swing)

Image (java.awt)

InputMap (javax.swing)

® Insets (java.awt)

KeyStroke (javax.swing)

ListModel (javax.swing)

Object (java.lang)

® Paint (java.awt)

Point (java.awt)

Rectangle (java.awt)

® SpinnerModel (javax.swing)
* TableModel (javax.swing)

* TreeModel (javax.swing)

-28-

JFormDesigner 8.2 Documentation

ActionMap (javax.swing)

This (read-only) custom editor allows you to see the actions registered for a component in its action map. The
information in the column "Key Stroke" comes from the input map of the component and shows which key strokes
are assigned to actions. The JComponent property "actionMap" is read-only. Expand the Read-only Properties
category in the Properties view to make it visible.

[3] actionMap X
Key Stroke Action Key » Action
beep javax.swing.text.DefaultEditorKit$BeepAction ~
KP_LEFT, LEFT caret-backward javax.swing.text.DefaultEditorKit$NextVisualPositionAction
caret-begin javax.swing.text.DefaultEditorKit$BeginAction
HOME caret-begin-line javax.swing.text.DefaultEditorKit$BeginLineAction
caret-begin-paragraph javax.swing.text.DefaultEditorKit$BeginParagraphAction
caret-begin-word javax.swing.text.DefaultEditorKit$BeginWordAction v
2

Border (javax.swing)

You can either select a border from the combo box in the properties table or use the custom editor.

border (default) | o |
foreground (default)
toolTipText (no border)

: TitledBorder
[+] 2
[l Expert Properties (2t (ko der, DLU2 BORDER]
Read-only Propertie

— [TitledBorder, EmptyBorder(5,5,5,5)]

In the custom editor you can edit all border properties. Use the combo box at the top of the dialog to choose a
border type. In the mid area of the dialog you can edit the border properties. This area is different for each border
type. At the bottom, you can see a preview of the border.

B vorder % Following border types are supported:
Border type: TitledBorder v ® BevelBorder
® CompoundBorder
ST ® DropShadowBorder (SwingX)
Title: Address * EmptyBorder
Title justification: Leading v * EmptyBorder (JGoodies)
Title position: Default v ® EtchedBorder
Title color: (default) ® LineBorder
Title font: (default) Edit... ® MatteBorder
Border: (default) Edit... ® SoftBevelBorder
® THitledBorder
® Swing look and feel
Preview
custom borders
Address

-29.-

JFormDesigner 8.2 Documentation

Color (java.awt)

In the properties table, you can either enter RGB values, color names, system color names or Swing UlManager
color names. When using an RGB value, you can also specify the alpha value by adding a fourth number.

background 36, 85, 233 ‘

The custom editor supports various ways to specify a color. Besides RGB, you can select a color from the AWT,
System or Swing palettes.

[3] background X

Swatches HSV HSL RGB CMYK AWT Palette System Palette Swing Palette

®Hue | 225%
(O saturation | 81~
- O Lightness 1 525
Transparency | 0%

Preview

8 Bl ¥ Sample Text Sample Text
~ DIsample Text Sample Text

Sample Text Sample Text

ComboBoxModel (javax.swing)

This custom editor allows you to specify string values for a combo box.

[3] model X

ComboBox model items:

red
green
blue

Each line in the above text field represents a value in the model.

? Cance

Cursor (java.awt)

This editor allows you to choose a predefined cursor.

CROSSHAIR v
doubleBuffered DEFAULT
enabled CROSSHAIR
. . TFYT

-30-

JFormDesigner 8.2 Documentation

Dimension (java.awt)

Either edit the dimension in the property table or use the custom editor.

dimension wEE] h20 v ‘

[3] dimension X
Width: 54% pixel
Height: 203 pixel

Font (java.awt)

You can either use absolute fonts, derived fonts or predefined fonts of the look and feel. Derived fonts are
recommended if you just need a bold/italic or a larger/smaller font (e.g. for titles), because derived fonts are
computed based on the current look and feel. If your application runs on several look and feels (e.g. several
operating systems), derived fonts ensure that the font family stays consistent.

In the properties table, you can quickly change the style (bold and italic) and the size of the font.

font +Bold +5 FINEEEEES

In the custom editor you can choose one of the tabs to specify either absolute fonts, derived fonts or predefined
fonts.

[3] font X [3] font X
Font Derived Font Swing Font Derived Font Swing
Family: Style: Size: Family
Tahoma Bold Italic 265 Eamily: (unchanged) ~
SimSun-ExtB ~ | Plain 8 A
Sitka Banner Bold 10 Style
Sitka Display Italc : 11 Bold: QOunchanged @set O dear
Sitka Heading 12 .
Sitka Small 14 Ttalic: (Ounchanged @set O clear
Sitka Subheading 16
Sitka Text 18 Size
Sylfaen 20) -
Symbol 22 @ relative +575
Fﬂ_ v 24 O absolute 2=
Tahoma 26 Bold Italic Tahoma 26 Bold Italic
Preview Preview
The quick brown fox jumps over the lazy dog The quick brown fox jumps over the lazy dog
? Cancel ? Cancel

231 -

Icon (javax.swing) and Image (java.awt)

JFormDesigner 8.2 Documentation

This custom editor allows you to choose an icon. It supports bitmap images (PNG, GIF and JPEG) and vector
graphics (SVG). When using SVG, then class FlatSVGIcon from FlatLaf Extras is required.

‘ ‘ icon copy.png (/com/formdev/toolkit/resources... = ...

Click the plus button in the properties table to open the default custom editor, which allows you to use an icon

from the project resources.

[3] select icon file X [3] select icon file X
type filter text copy{ X
[=}-[C@ master (D:\JFormDesigner ~
D Forr(nDesigner\srcg) E‘] copy.png (com.formdev.toolkit.resources.actions)
=+[*7 Toolkit\src !)
=} [2] com.formdev.toolkit.resources D copy@2x.png (com.formdev.toolkit.resources.a...
(=[] actions
E‘] copy_dark.png (com.formdev.toolkit.resources....
+ + +
addpng add@2xpng add small.p... @ copy_dark@2x.png (com.formdev.teolkit.resou...
+ = N
add_small@... cancelpng cancel@2x....
= — x
= = %
collapse_all.... collapse_all... collapse_all...
v ‘)
= 0
collapse_all... | <esimens| | copy@2x.png
copy_dark.p... copy_dark@... cut.png v
? Cancel ? oK Cancel

Click the ellipsis button in the properties table to open the extended custom editor, which allows you to use an
icon from the project resources, from the file system or from the Swing UIManager (look and feel). It is
recommended to use the project resources and embed your icons into your application JAR.

E icon

Image source type:
(®Project resource (e.g. /com/myapp/image.gif)
(OExternal file or URL (e.g. c:\myapp\image.gif)
(O swing

(ONg icon (nully

(O Default icon

Source Folders...

X

Name: [com/formdev/toolkit/resources/actions/copy.png Browse...
Preview
o
Dimension: 16 x 16
Size: 362 Byte
? Cancel

-32-

https://github.com/JFormDesigner/FlatLaf/tree/main/flatlaf-extras

JFormDesigner 8.2 Documentation

InputMap (javax.swing)

This (read-only) custom editor allows you to see the key strokes registered for a component in its input map. The
information in the column "Action" comes from the action map of the component and shows which action classes
are assigned to key strokes. The JComponent property "inputMap" is read-only. Expand the Read-only Properties
category in the Properties view to make it visible.

[3) inputMap X

When Focused (33) When in Focused Window (0) When Ancestor of Focused Component (0)

Key Stroke Action Key Action

KP_LEFT caret-backward javax.swing.text.DefaultEditorKitsNextVisualPosi... ~
LEFT caret-backward javax.swing.text.DefaultEditorKit$NextVisualPosi...
HOME caret-begin-line javax.swing.text.DefaultEditorKit$BeginLineAction
END caret-end-line javax.swing.text.DefaultEditorKit$EndLineAction
KP_RIGHT caret-forward javax.swing.text.DefaultEditorKitsNextVisualPosi... v

g

Insets (java.awt)

Either edit the insets in the property table or use the custom editor.

insets td12b2r2 v
[3] insets X

Top: 2% pixel
Left: 2% pixel
Bottom: 25 pixel
Right: 2% pixel

KeyStroke (javax.swing)
In the properties table, you can enter a string representation of the keystroke. E.g. "Ctrl+C" or "Ctrl+Shift+S".

The custom editor supports two ways to specify a keystroke. Either type any key stroke combination if the focus is
in the first field or use the controls below.

The KeyStroke editor supports menu shortcut modifier key (Command key on the Mac, Ctrl key otherwise).

[3] accelerator X

Type any key stroke combination:

Ctrl+Shift+S

Key Stroke Properties
Modifiers: []Ctrl [_JAlt []Shift [Meta [_]Alt Gr
[[JMenu shortcut (Meta on Mac OS X, Ctrl otherwise)

Key code: S v

-33-

JFormDesigner 8.2 Documentation

ListModel (javax.swing)

This custom editor allows you to specify string values for a list.

[3] model X

List model items:

red ~
green

blug

Each line in the above text field represents a value in the model.

? Cance

Object (java.lang)

This editor allows you to reference any (non-visual) JavaBean as a property value. Often used for JLabel.
labelFor.

labelFor [T]] phoneField v

text (hone)
toolTipText If:[] cityField
verticalAlignment | [T]] countryField

Expert Properties (2| [T]] nametField
Read-only Propertief T e
Code Generation (13 ,II] ZipField

Paint (java.awt)

This editor allows you to specify a java.awt.Paint object (used by java.awt.Graphics2D). Use the combo
box at the top of the dialog to choose a paint type. In the mid area of the dialog you can edit the paint properties.
This area is different for each paint type. At the bottom, you can see a preview of the paint. For GradientPaint you
can click-and-drag the handles in the preview area to move the points.

B paint % Following paint types are supported:

Paint type: GradientPaint v ® Color

® GradientPaint
Paint properties

Colors:
TS
Wred Hblue

Point 1 (x/y): 125 9% pixel
Point 2 (x/y): 755 333 pixel
Angle: 21%| degree
Magnitude: 67> pixel
Cyclic

Preview

-34-

JFormDesigner 8.2 Documentation

Point (java.awt)

Either edit the point in the property table or use the custom editor.

= PR
[3] point X

.
pixel

[><
o
4

=
~
~
4

= .
pixel

Rectangle (java.awt)

Either edit the rectangle in the property table or use the custom editor.

rectangle x| y20 w100 h2 = ‘

[3] rectangle X
X: 105 pixel
Y: 203 pixel
Width: 1003 pixel
Height: 205 pixel

SpinnerModel (javax.swing)

This custom editor allows you to specify a spinner model (used by JSpinner). Use the combo box at the top of
the dialog to choose a spinner model type (Number, Date or List). In the mid area of the dialog you can edit the
model properties. This area is different for each model type. At the bottom, you can see a test spinner where you
can test the spinner model.

[3] model X

Model type: Number v

Model properties

Number type: Integer ~

Initial value:)=

[IMinimum: (1]=

Maximum: 1005

Step size: 105
Preview

Here you can test the above settings.

Test spinner:)=

-35-

String (java.lang)

JFormDesigner 8.2 Documentation

Either edit the string in the property table or use the custom editor. Switch the "allow new-line" check box on, if

you want enter new lines.

text Nemel]

[3] text

X

mollit anim id est laborum)|

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt

[allow new-line

Localization

|:|§tore string in resource bundle (properties file)

Bundle name:
Key:

?

Browse...

Cancel

Stringll (java.lang)

This custom editor allows you to specify string values for a string array.

[3] stringArray X
String array items:
red A
green
blug
W

Each line in the above text field represents a value in the array.

?

Cancel

-36 -

TableModel (javax.swing)

This custom editor allows you to specify values for a table.

[3] model X
Table model items:
A B C Columns
John Smith] Count: 35
Steve Miller
Insert
Delete
Move Left
Move Right
Rows
Count: 2%
Insert
Delete
Move Up
The above table is editable. Select a cell and start typing. Use RETURN to
Move Down

commit, ESC to cancel and arrow keys to move selection.

Column properties

Here you can edit the properties of the column selected in the above table.

-

No.: 2 Title: Pref. width: 705
Type: Boolean ~ Values: Edit... Min. width: 705
editable [|resizable Max. width: 705

TreeModel (javax.swing)

This custom editor allows you to specify string values for a tree.

[3] model X

Tree model items: Preview:
colors A colors

red e red

green dark =~/ green

light e dark
blue| e light
> + blue

Each line in the above text field represents a node in the model.
Use tabs to indent a line to deeper levels.

-37-

JFormDesigner 8.2 Documentation

JFormDesigner 8.2 Documentation

2.7 Bindings View

The Bindings view displays and lets you edit all bindings of the form. The bindings and binding groups are shown
in the order they will be bound.

This view is not visible by default. It appears at the bottom of the main window when you click the Show Bindings

View button (

) in the toolbar.

Bindings ++_|‘f"|=‘x
Source | Target \ Options
bindingGroup

this - taskitle < | titeField - text I

this - task.description
this - categories
this - task.category

enablementBindingGroup
this - ${task = null}
titleField - editable
descriptionField - editable
categoryField - enabled

= descriptionField - text
= categoryField - elements
= categoryField - selectedItem

= titleField - editable

= titleLabel - enabled

= descriptionLabel - enabled
= categorylLabel - enabled

The icon between the source and the target columns indicate the update strategy used by the binding:

>
-

1%

Always sync (read-write)

Only read from source (read-only)

Read once from source (read-once)

Toolbar and context menu commands

1t

Add

Add Group
Remove
Properties

Move Up

Move Down

Link with Designer

Close

Create a new binding.

Create a new binding group.

Remove the selected bindings.

Displays the properties of the selected binding in the Binding dialog.
Move the selected bindings up.

Move the selected bindings down.

Links the bindings selection to the active designer.

Closes the Bindings view.

Double-click on a binding item to see its details in the Binding dialog.

-38 -

JFormDesigner 8.2 Documentation

2.8 Error Log View

This view appears at the bottom of the main window if an exception is throw by a bean. You can see which bean

causes the problem and the stack trace of the exception. This makes it much easier to solve problems when using
your own (or 3rd party) beans.

|ErrorLog a)(|_‘><
Component | Message Exception
splitPanel Failed to set property "resizeWeight" to "2". IllegalArgumentException: JSplitPane wei...

Toolbar commands

B Copy Log Copies all log records to the clipboard.

X Clear Log Clears the log.

B Properties Displays the properties of the selected log record in a dialog (see below).
Close Closes the Error Log view.

Double-click on a log entry to see its details:

[3] Error Properties X

Date: Aug 31, 2016 6:30:26 PM

Component: splitPanel

Message: Failed to set property "resizeWeight" to "2". -~

Exception Stack Trace:

java.lang.lIllegalArgumentException: JSplitPane weight must be between 0 and 1 ~
at javax.swing.JSplitPane.setResizeWeight(JSplitPane.java:726)
at sun.reflect.NativeMethodAccessorImpl.invokeO(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java::
at java.lang.reflect.Method.invoke(Method.java:498) v

>

? OK

How to fix errors

This mainly depends on the error. The problem shown in the above screenshots is easy to fix by setting
resizeWeight to avalue between 0 and 1.

If the problem occurs in your own beans, use the stack trace to locate the problem and fix it in your bean's source

code. After compiling your bean, click the Refresh Designer button () in the designer toolbar to reload your
bean.

If you are using 3rd party beans, it is possible that you need to add additional libraries to the classpath. You

should be able to identify such a problem on the kind of exception. In this case, add the needed libraries to the
JFormDesigner classpath of the current Project, and refresh the Design view.

-39-

JFormDesigner 8.2 Documentation

3 Localization

JFormDesigner provides easy-to-use and powerful localization/internationalization support:

® Externalize and internalize strings.

Edit resource bundle strings.

* Create new locales.

* Delete locales.

Switch locale used in Design view.

* In-place-editing strings of current locale.

® Auto-externalize strings.

Choose existing strings.

Updates resource keys when renaming components.
* Copies resource strings when copying components.
® Removes resource strings when deleting components.
Localization preferences.

Use .properties or .xml files.

® Fully integrated in undo/redo.

The locales combo box @ in the toolbar allows you to select the locale used in the Design, Structure and Properties
views. If you in-place-edit a localized string in the Design view @, you change it in the current locale. Small flags ©
in front of property values in the Properties view indicates that the string is localized (stored in a properties file).

[3] JFormDesigner 6 - MyProject - O X
File Edit View Form Window Help o
GRla - BCa- B E ¢ XA | X8 - Windows v (] ™German (.. v § - }2 || ? [mm
Palette £ [5G AddressPanel ‘ (default) e = e

: o 0 e 1 e 5 German (de) 7 1

I_} Selection Mode h zifField

[_1Marquee Selection % [Verres EE cityField

@] Choose Bean... = EmcountryLabel ("Land:")

1 | Tel.: T 16

“ Components 2 Properties JE[8 |2 | Q‘E.’."

[ibe] Label 2 |PLz/Ort: Name | Value |

) E] 1 cliavicu I_I uauc

JTextField 3 :EE_- font Tahoma 21

[JComboBox 2 foreground I black
> Containers 9 horizontalAlign... LEADING
> Windows 6 icon
> Menus 7 labelFor —

: text I'F Land:

> JGoodies 3 toolTipText
> Binding 3 - verticalAlignment CENTER
> Custom 0 Expert Properties (25)

-40 -

JFormDesigner 8.2 Documentation

Create a new localized form

When creating a new form, you can specify that JFormDesigner should put all strings into a resource bundle (.
properties file). In the New Form dialog select the Store strings in resource bundle check box, specify a resource
bundle name and a prefix for generated keys. If Auto-externalize strings is selected, then JFormDesigner
automatically puts all new strings into the properties file (auto-externalize). E.g. when you add a JLabel to the
form and change the "text" and "toolTipText" properties, both strings will be put into the properties file.

To localize existing forms use Externalize Strings.

New Form X
)]

Create a new Form

Specify layout and localization options.

Superclass: @ IPanel O IDialog O JErame O other
beans.AbstractPanel Browse...
Button bar: OK / Cancel oK none Help

Content Pane Layout

Layout manager: BorderLayout ~
BorderLayout options

Horizontal gap: 02 pixel

Vertical gap: 0, pixel

gqual gaps

Localization

Store strings in resource bundle (properties file) Auto-externalize strings

Resource bundle name: com.myapp.Bundle Browse...

Prefix for generated keys: AddressPanel |:|no prefix

-41 -

JFormDesigner 8.2 Documentation

Edit localization settings and resource bundle strings

To edit localization settings and resource bundle strings, select Form > Localize from the main menu or click the

Localize button (i?') in the toolbar. Here you can create or delete locales and edit strings. The light gray color used
to draw the string "Name:" in the table column "German" indicates that the string is inherited from a parent locale.

[3] Localize X

Localization settings and resource bundles

Edit localization settings, resource bundle strings or add new locales.

Localization settings

Resource bundle name: com.myapp.Bundle Browse...
Resource bundle file: D:\Java\MyProject\src\com\myapp\Bundle.properties
Prefix for generated keys: AddressPanel Auto-e)_(ternalize strings

Resource bundles

Strings:

Key « (default) ™8 German (de)
AddressPanel.countryLabel.text Country: Land:
AddressPanel.namelabel.text Name: Name:
AddressPanel.phonelabel.text Phone: Tel.:
AddressPanel.zipCityLabel.text ZIP / City: PLZ / Ort:

The above table is editable. Select a cell and start typing. Use RETURN to commit, ESC to cancel and arrow keys t...
Show only strings used in active form

? New Locale... Delete Locale... Cancel Apply

The Resource bundle name field is used to locate the properties files within the Source Folders of the current
Project. Use the Browse button to choose a resource bundle (.properties file).

In the Prefix for generated keys field you can specify a prefix for generated resource bundle keys. The format for
generated keys is "<prefix>.<componentName>.<propertyName>". You can change the separator ('.") in the
Localization preferences.

If the Auto-externalize strings check box is selected, then JFormDesigner automatically puts all new strings into
the properties file. E.g. when you add a JLabel to the form and change the "text" and "toolTipText" properties,
both strings will be put into the properties file. You can exclude properties from externalization in the Localization
preferences.

-4 -

JFormDesigner 8.2 Documentation

Create new locale

To create a new locale, either select Form > New Locale from the main menu, New Locale ('h) from the toolbar
or click the New Locale button in the Localize dialog. Select a language and an optional country. You can copy
strings from an existing locale into the new locale, but JFormDesigner fully supports inheritance in the same way

as specified by java.util.ResourceBundle. E.g. if a message is not in locale "de_AT" then it will be loaded from
locale "de".

[3] New Locale X

Create new locale

Specify the language and country of the new locale.

Locale
Language: & = Danish (da) v
Country (optional): (none) ~
DShow all languages and countries
Copy
Copy strings from: (none) ~

Delete a locale

To delete an existing locale, either select Form > Delete Locale from the main menu, Delete Locale (i1) from the
toolbar or click the Delete Locale button in the Localize dialog. Select the locale to delete.

[3] Delete Locale X
Delete a locale

Select the locale to delete.

Locale: & = Danish (da) v

Note:

« Deleting a locale deletes the properties file of the specified locale.
« If the properties file contains strings used in other forms, they are lost.
« Locale deletion can not be undone.

-43-

JFormDesigner 8.2 Documentation

Externalize strings

Externalizing allows you to move strings from a .jfd file to a .properties file. If you want localize existing forms, start
here.

Select Form > Externalize Strings from the main menu or Externalize Strings (4F) from the toolbar, specify the
resource bundle name, the prefix for generated keys and select/deselect the strings to externalize. You can
exclude properties from externalization in the Localization preferences.

[3] Externalize Strings X

Externalize Strings to a resource bundle

Move strings to a resource bundle for localization.

Resource bundle name: com.myapp.Bundle Browse...
Prefix for generated keys: |AddressPanel |:| no prefix

[] Auto-externalize strings on subsequent changes

Externalize strings to locale: (default) ~

Strings to externalize:

Component = Property Value Key
[dee] countrylLabel text Country: AddressPanel.countryLabel.text
] nameLabel text Name: AddressPanel.namelLabel.text
[dee] phonelabel text Phone: AddressPanel.phonelabel.text
[dee] zipCityLabel text ZIP [City: AddressPanel.zipCityLabel.text
? Select All Deselect All Cancel

You can also externalize and internalize properties in the Properties view.

e I e 27 Restore Default Value

verticalAlign N7 set Value to null
Expert Prope]
Read-only pr ¢~ Bind..
Code Genera _
Use Local Ve,

|

Externalize String
Internalize String [“\5

il

-44 -

JFormDesigner 8.2 Documentation

Internalize strings
Internalizing allows you to move strings from a .properties file to a .jfd file.
Select Form > Internalize Strings from the main menu or Internalize Strings ('%) from the toolbar, specify the

locale to internalize from and select/deselect the strings to internalize. If you internalize all strings, JFormDesigner
asks you whether you want to disable localization for the form.

[3] internalize Strings X

Internalize Strings to the form

Move strings from a resource bundle into the form and remove the strings from the resource bundle.

Internalize strings from locale: " (default) v

Strings to internalize:

| Component = ‘ Property Value Key
[dee] countrylLabel text Country: AddressPanel.countryLabel.text
[‘c] nameLabel text Name: AddressPanel.namelabel.text
[5ke] phonelabel text Phone: AddressPanel.phonelabel.text
[5ke] zipCityLabel text ZIP / City: AddressPanel.zipCityLabel.text
? Select All Deselect All Cancel

Choose existing strings

The flag button ('¥) in the Properties view, which is only available for localized forms and string properties, allows
you to choose existing strings from the resource bundle of the form.

labelFor

toolTipText

In the Choose Key dialog you can search for keys and/or values. Then select a key in the table and press OK to use
its value in the form.

[3] choose Key X

Choose a key

Search for keys or values and select a key.

Search string (? = any character, * = any String):

Matching strings:

Key ~ B value
AddressPanel.countrylLabel.text
AddressPanel.namelabel.text Name:

AddressPanel.phonelabel.text Tel.:
AddressPanel.zipCityLabel.text PLZ / Ort:

Search for: @Key (O)Value (OBoth [|Case sensitive
[C]show only keys that start with key prefix of active form ("AddressPanel.")

? New String... Delete String Cancel

- 45

JFormDesigner 8.2 Documentation

4 Beans Binding (JSR 295)

JFormDesigner supports the Beans Binding specification (JSR 295).

A binding syncs two properties: the source property with the target property. The source is usually a (non-visual)
data model object and the target is usually a Ul component (e.g. a JTextField). Initially the value of the source

property is copied to the target property. Depending on the "Update strategy", a binding tracks changes on both
properties and syncs the properties.

Source Target

?Ubllc class Task Title: Implement new layout manager
public enum Priority { HIGH, NOR W }; Description: We need support for this new

exciting layout manager.

private String title;]
private String description; / Category: Development v
private String category = "None"; Priority: High v
private Priority priority = Priority.NORMAL;
private boolean completed; €— > Status: []Completed

Beans Binding is open source and not part of the standard Java distribution. You must ship an additional
library with your application. JFormDesigner includes beansbinding.jar, beansbinding-doc.zip and
beansbinding-src.zip inits redistributables.

Maven Central Repository: groupld: org.jdesktop artifactld: beansbinding version: 1.2.1

API documentation: doc.formdev.com/beansbinding/

Source code: github.com/JFormDesigner/swing-beansbinding

The Bindings view @ gives a good overview of all bindings in the form. The Show Bindings View button & makes
this view visible. The Bindings property category © in the Properties view shows the bindings of the selected
component and you can add (), edit (=) and remove (=) bindings. Small arrows @ indicate that the property is

bound. Binding groups are also shown in the Structure view ©. The Binding palette category @ provides useful
components.

[3] JFormDesigner 6 - MyProject — O X
File Edit View Form Window Help ()
M- B0 -HE ¢ A 30| X -| Windows v|C5[_(nolocale) ¥ i - 2| 0| ? (A
Palette &[G * TaskView ‘ Structure o
[+ Selection Mode le 0 e 1 b | %&ca_eg_jory el ot e
*** Marquee Selec... (x| o O Iib_e‘:prlorltyLabeI ("Priority:")
g, __.j. q g Title: E - § [T7 priorityField
@ Choose Bean... T Ig;b_e‘:statusLabel ("Status:")
v Components 23 0— [\/! completedCheckBox ("Completed")
[JLabel 18 1 R N I _?(5" bindingGroup (2 bindings)
JTextField | _?(5" enablementBindingGroup (10 bindings)
[T¥] JComboBox . Description: Properties .LE .LE lg | Q ‘ 27
JButton & Category: item 1 | gy Name | Value |
JCheckBox By Priority: item 1 ~ £ Bindings (3)
@ JRadioButton = = : editable < this - ${task = null}
§ Status: []Completed editable > titleLabel - enabled
JToggleButton text < this - task.title
T TTextArea
Events (0
> Containers 1] ©

Client Properties (2)

: ndi + — | 5

> Windows 6 | Bindings + % | ‘ L3 "_| = ‘ *1= Properties (9, 1 set)

> Menus 7 | Seurce Target | Options | background [] white

- bindingGroup 1 20

> JGoodies 3 . . — columns

v Bindin R this - task.title 4 |titleField - text _ & editable [“true
NG 9 this - task.description <% descriptionField - text enabled Mtrue
) List || enablementBindingGroup font Tahoma 21
O ObservableList this - ${task = null} 4 |titleField - editable _ foreground I black
D ObservableMap || this - ${task != null} <> descriptionField - editable @ horizontalAlignm... LEADING

> Custom 0| this - ${task '= null} < categoryField - enabled ~ text

- 46 -

https://doc.formdev.com/beansbinding/
https://github.com/JFormDesigner/swing-beansbinding

Add/Edit Bindings

There are several ways to add/edit bindings:

JFormDesigner 8.2 Documentation

Right-click on a component in the Design or Structure view and select Bind from the popup menu. To edit an
existing binding, select a bound property from the Bind submenu.

* Click the Add/Edit Binding button (F/-) in the Bindings property category in Properties view.

Right-click on a component property in the Properties view and select Bind from the popup menu.

® Use the Add/Properties command in the Bindings view.

Remove Bindings

To remove existing bindings do one of:

Click the Remove Binding button (T in the Bindings property category in Properties view.

Use the Remove command in the Bindings view.

Binding Dialog
This dialog enables you to edit all options of one binding.

General tab

[3] edit Binding X Field
Bind two properties of JavaBean components SR
Specify source, target and options of the binding. Source
path
General Advanced Table Binding (4) Detail
Source path
Source: |:|this (Javax.swing.... v~
Target
Source path: tasks v
: : Target
Detail path: (use element.toStrin... path
Target Update
Target: [tasksTable (javax... v strategy
Target path: elements v
Update Update
Update strategy: # Always sync (rea... source
when
Update source when: While typing
Ignore adjusting
Ignore
adjusting

-47 -

Description
The source object.

The path (or expression) that identifies the source
property.

The path (or expression) that determines what is
displayed to the user in the target JList.
(only if target is JList.elements)

The target object.

The path (or expression) that identifies the target
property.

Specifies how the properties are kept synchronized.
Possible values: "Always sync (read-write)", "Only read
from source (read-only)" and "Read once from source
(read-once)".

Specifies when the source is updated from the target.
Possible values: "While typing", "On focus lost" and "On
focus lost or Enter key pressed".

(only if target is JTextComponent.text)

If enabled, do not update properties until the user
finished adjusting. E.g. while a slider is adjusting its value
or while the list selection is being updated.

(only if target is JSlider.value, JList.selectedElement(s) or JTable.
selectedElement(s))

Advanced tab

[3] Edit Binding X Field
Bind two properties of JavaBean components NEITIE
Specify source, target and options of the binding.
Group
General Advanced Table Binding (4) Converter
Identification and Group
Name: Validator
Group: bindingGroup v
. Source null
Converter and Validator
Converter: (none) v Source
unreadable
Validator: (none) v
Target null
Alternate Values
Bind
[Source nult immediately
[[]Source unreadable:
[JTarget null:
Miscellaneous
[]Bind immediately

Table Binding tab

JFormDesigner 8.2 Documentation

Description

The binding's name. Useful for BindingGroup.
getBinding(name).

The group this binding belongs to.

The Converter that converts the value from source
type to target type and vice versa.

The Validator that validates the value before passing it
from the target back to the source property.

Used if the value of the source property is null.

Used if the source property is unreadable.

Used if the value of the target property is null.

Bind this binding immediately after creation.
Otherwise, bind when the group is bound.

On this tab you can bind List<E> element properties to JTable columns. Each item in the source List<E>
represents a row in the JTab'le. See JTableBinding for details about table binding.

This tab is enabled if source is an instance of java.util.List<E>,targetaninstance of javax.swing.JTable

and target property is elements.

[3] Edit Binding

Bind two properties of JavaBean components
Specify source, target and options of the binding.

General Advanced Table Binding (4)

X Field Description
Editable Specifies whether the table cells
are editable or not.
Columns The column bindings. The

Source Path identifies the
source property in <E>.The

[“Editable Column Name is shown in the
JTable column header. Each
Columns: column binding may have its
Source Path Column Name Column Class Editable own Cor_lverter, Validator and
title Title java.lang.String Alternative Values.
category Category java.lang.String
priority Priority com.jformdesigner.ex...
completed Completed java.lang.Boolean
1+ 3 Add Multiple... Add... Edit... Remove
? Cancel Apply

-48 -

https://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/BindingGroup.html#getBinding%28java.lang.String%29
https://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/BindingGroup.html#getBinding%28java.lang.String%29
https://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/Converter.html
https://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/Validator.html
https://doc.formdev.com/beansbinding/org/jdesktop/swingbinding/JTableBinding.html
https://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/Converter.html
https://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/Validator.html

JFormDesigner 8.2 Documentation

Path or Expression

To address source or target properties you can either use a path or an expression. Select the Expression
Language button (50) left to the input field to enter an expression.

A path (implemented by BeanProperty) uses a dot-separated path syntax. E.g. task.title addressesthe title
property of an object's task property. This is equivalent to source.getTask().getTitle().

An expression (implemented by ELProperty) uses the Expression Language (EL) also known from JSP and JSF.
Besides a dot-separated path syntax to address properties (e.g. " ${task.title} ") it also supports following
operators:

® Arithmetic: +, -, *, / and div, % and mod
® logical: and, &&, or, ||, not, !
® Relational: ==, eq, !=, ne, <, 1t, >, gt, <=, ge, >=, le

® Empty: empty

Conditional: A 2 B : C

EL expression examples:

EL expression Result

${task.title} The title property of an object's task property.
${firstName} ${lastName} Concatenation of firstName and lastName properties.
${mother.age > 65} true if mother is older than 65, false otherwise.
${image.width * image.height} Computes the number of pixels of an image.
${image.width * image.height * 4} Computes the number of bytes of an 32 bit image.

Following words are reserved for the EL and should not be used as identifiers:

and or not div mod
eq ne 1t gt ge le
true false null empty instanceof

Data model

The data model used by Beans Binding (JSR 295) is based on the JavaBeans specification. Getters are necessary to
read property values and setters to modify property values. On modifications, property change events should be
fired so that beans binding can update the Ul components. E.g.:

public class Task {
private String title;

public String getTitle() {
return title;
}

public void setTitle(String title) {

String oldTitle = this.title;

this.title = title;

changeSupport. firePropertyChange("title", oldTitle, title);
}

private final PropertyChangeSupport changeSupport = new PropertyChangeSupport(this);

public void addPropertyChangeListener (PropertyChangelListener listener) {
changeSupport.addPropertyChangeListener (listener);

public void removePropertyChangelListener (PropertyChangelListener listener) {
changeSupport.removePropertyChangelListener (listener);
}

-49 -

https://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/BeanProperty.html
https://doc.formdev.com/beansbinding/org/jdesktop/beansbinding/ELProperty.html
https://docs.oracle.com/javaee/6/tutorial/doc/gjddd.html
https://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://javaserverfaces.java.net/
https://docs.oracle.com/javaee/6/tutorial/doc/bnaik.html

JFormDesigner 8.2 Documentation

Data model access

The source and target combo boxes in the Binding dialog offer only the components added to the form. To bind
your data model to form components, you could add an instance of your data object to the form (using Choose
Bean), but this requires that the data object is a JavaBean with public null constructor, which is not always possible.

The preferred way to access the data model for binding is to add a getter for the data model to the form class. E.g.:

public class TaskViewForm extends JPanel {

private Task task;

public Task getTask() {
return task;
}

After compiling the form class, you can use this as binding source and task.someProperty as binding source

path.

Add a setter to the form class, if the whole data model may change. E.g.:

public class TaskViewForm extends JPanel {

public void setTask(Task task) {
Task oldTask = this.task;
this.task = task;
firePropertyChange("task", oldTask, task);

How to bind data to a JTable

Beans Binding requires that the dataisina java.util.List (or ObservableList). The type of each data row
should be specified as type parameter to the list. E.g. java.util.List<MyData>. The data class should have
getters and setters for its values, which can bound to table columns.

Steps to bind a table:

1.

Add a java.util.List component from the Bindings palette category to the form. JFormDesigner creates
a variable for the list in the Java code, but does not assign a value to it. It is up to you, to assign data to the list
before invoking initComponents().

2. Set the Type Parameters property (expand the Class property in Properties view) of the List to your data
class (e.g. MyData). Make sure that the data class is compiled and in the classpath of the project.
3. Add a JTable to the form.
4. Right-click on the table and select Bind > elements from the popup menu, which opens the Binding dialog.
5. On the General tab, set the source to your List object and leave the source path empty.
6. Switch to the Table Bindings tab.
7. Click the Add Multiple button and add columns.
Examples

For examples that use Beans Binding, take a look at the package com.jformdesigner.examples.
beansbinding in the examples.

-50 -

https://doc.formdev.com/beansbinding/org/jdesktop/observablecollections/ObservableList.html

JFormDesigner 8.2 Documentation

5 Projects

Stand-alone edition only. The IDE plug-ins use the source folders and classpath from the IDE projects.

Projects allow you to store project specific options in project files. You can create new projects or open existing
projects using the menubar or toolbar.

When you start JFormDesigner the first time, it creates and opens a default project named DefaultProject.jfdproj in
the folder ${user.home}/.jformdesigner, where ${user.home} is your home directory. You can see the value of
${user.home} in the About dialog on the System tab.

You can use the default project, but it is recommended to create an own JFormDesigner project in your project
root folder. Then you can commit the JFormDesigner project file into a version control system and reuse it on
other computers. Paths in the project file are stored relative to the location of the project file. Project files have the
extension .jfdproj

Pages

® General
® Source Folders
Classpath

Project specific preference pages:

MiglLayout

FormLayout (JGoodies)
GridBagLayout

* null Layout

Localization

Java Code Generator
Templates
Layout Managers
Localization
Binding

Code Style

Client Properties

L

L

L

L

L

L

General

When creating a new project, you can specify a project name and the location where to store the project file.

m Project Properties for MyProject X
e
enera
Source Folders
Classpath Specify the name and location of your project.
MigLayout Project name: MyProject
FormLayout (JGoodies)

. ion: B j B
GridBagLayout Tae=bon D:\Java\MyProject Browse
null Layout Description:

Localization

[=] Java Code Generator

Tamnlatac

? Restore Defaults Cancel

-57 -

JFormDesigner 8.2 Documentation

Source Folders

On this page, you can specify the locations of your Java source folders. Source folders are the root of packages
containing .java files and are used find resource bundles for localization and are also used by the Java code
generator to generate package statements.

E Project Properties for MyProject X
General
Source Folders
Source Folders
Classpath Specify the locations of your Java source folders. These are used to find resource
. bundles and to generate Java package statements.
MigLayout
FormLayout (JGoodies) Java source folders:
GridBagLayout [src
null Layout 27 test\src
Localization

[=] Java Code Generator

Templates

Layout Managers
. Add... Edit... Remove
Localization

? Restore Defaults Cancel

If the folders list is focused, you can use the Insert key to add folders or the Delete key to delete selected folders.

Classpath

To use your custom components (JavaBeans), JFormDesigner needs to know, from where to load the JavaBean
classes. Specify the locations of your custom JavaBeans on this page. You can add JAR files or folders containing .
class files.

m Project Properties for MyProject X

General al th
Source Folders asspa

Classpath Specify the locations of your custom JavaBeans. These are used to load JavaBeans

for editing forms and for the component palette.

MigLayout

FormLayout (JGoodies) Classpath:

GridBagLayout [classes

null Layout lib\mybeans.jar
Localization lib\jide-oss-3.6.15 jar

[=] Java Code Generator lib\migcalendar.jar

lib\migcalendarbean.jar

Templates

Layout Managers
Y 9 4+ 3 Add... Edit.. Remove

Localization

? Restore Defaults Cancel

If the classpath list is focused, you can use the Insert key to add folders/JAR files, the Delete key to delete
selected folders/JAR files, Ctrl+Up keys to move selected items up or Ctrl+Down keys to move selected items
down.

-52-

JFormDesigner 8.2 Documentation

6 Preferences

This dialog is used to set user preferences.

¢ Stand-alone: Select Window > Preferences from the menu to open this dialog.

* Eclipse plug-in: The JFormDesigner preferences are fully integrated into the Eclipse preferences dialog.
Select Window > Preferences from the menu to open it and then expand the node "JFormDesigner" in the
tree.

® Intelli) IDEA plug-in: Intelli) IDEA uses the term "Settings" instead of "Preferences". The JFormDesigner
preferences are fully integrated into the Intelli) IDEA settings dialog. Select File > Settings from the menu to
open it and then select the "JFormDesigner" page.

® NetBeans plug-in: NetBeans uses the term "Options" instead of "Preferences". The JFormDesigner
preferences are fully integrated into the NetBeans options dialog. Select Tools > Options from the menu to
open it and then select the "JFormDesigner" page.

Pages

* General
® MiglLayout
* FormLayout (JGoodies)
® GridBaglLayout
* null Layout
® Localization
® Java Code Generator

* Templates

® Layout Managers
Localization
Binding
Code Style (Stand-alone only)
® Client Properties
® Native Library Paths
® BeanlInfo Search Paths
® Check for Updates

Import and export preferences

In the Preferences dialog, you can use the Import () button to import preferences from a file and the Export (£
) button to export preferences to a file. This preferences file is compatible with all JFormDesigner editions. On
export, you can specify what parts of the preferences you want export.

You can also use IDE specific import/export commands:

® Eclipse plug-in: You can use the menu commands File > Import and File > Export to import and export
preferences to/from Eclipse preferences files.

® Intelli) IDEA plug-in: You can use the menu commands File > Import Settings and File > Export Settings to
import and export settings to/from Intelli] IDEA preferences files.

* NetBeans plug-in: You can use the Import and Export buttons in the Options dialog to import and export
options to/from NetBeans options files.

Note: Each IDE uses its own file format for preferences. The only way to transfer preferences between the
different JFormDesigner editions is to use JFormDesigner preferences files.

Restore defaults

Use the Restore Defaults ('3) button to restore the values of the active page to its defaults.

-53-

JFormDesigner 8.2 Documentation

General

On this page, you can specify general options.

[3] Preferences X
- General
MigLayout
FormLayout (JGoodies) Animation
GridBagLayout Animate layout changes in Design view
null Layout Animation speed: (fast (@) default () slow
Localization
Look and Feels Other
[=] Java Code Generator []Buffer Design view in video memory
Templates Undo history size: 1,000
Layout Managers
Localization Persistence
Binding Form file format: | JFDML ~ (applies to new forms only)
Code Style
) g4] To change the persistence format of an existing form, open the form,
Client Properties select the "(form)" node in the Structure view and change the "Form file format"
Native Library Paths property in the Properties view. Or use the JFormDesigner command-line tool

to convert the format of many forms.
BeanInfo Search Paths

Check for Updates

? Import... Export... Restore Defaults Cancel

Option Description Default

Animate layout If enabled, changes to the layout in the Design view are done animated. On
changes in Design view

Animation speed The speed of the animation. default
Buffer Design view in If enabled, parts of the Design view are buffered in the video memory of the graphics On
video memory card to improve painting speed.

Undo history size The maximum number of steps in the undo history of a form. 1000
Form file format The format used to persist the form. Since version 5.1, JFormDesigner supports the JFDML

compact, easy-to-merge and fast-to-load persistence format JFDML. To change the
persistence format of an existing form, open the form, select the "(form)" node in the
Structure view and change the "Form file format" property in the Properties view. Or
use the JFormDesigner command-line tool to convert the format of many forms.

MigLayout
On this page, you can specify MigLayout related options.
[3] Preferences X
General MiaL t
IgLayou
=
FormLayout (JGoodies) Configure Project Specific Settings...
GridBagLayout Default layout constraints for new forms
null Layout Layout: hidemode 3
Localization Default constraints for new columns/rows
Look and Feels
Column: fill
[=I Java Code Generator
Templates Row:
Option Description Default
Layout constraints The layout constraints used for new forms/containers. hidemode 3

-54-

JFormDesigner 8.2 Documentation

Option Description Default
Column constraints The column constraints used for new columns. fill
Row constraints The row constraints used for new rows.
FormLayout (JGoodies)
On this page, you can specify FormLayout related options.
[3] Preferences X
General F L t (JGoodi
ormLayou oodies
MigLayout Y ()
FormLayout (JGoodies) Configure Project Specific Settings...
GridBagLayout . .
[+] Automatically insert/remove gap columns/rows
null Layout _ .
o JGoodies Forms version: = (auto-detect)
Localization
Look and Feels Column/row templates for new columns/rows
[=] Java Code Generator
Column: default default v
Templates
Layout Managers Column gap: label component gap 3dlu v
Localization Row: default default v
Binding R .]
ow gap: ine ga u v
Code Style aap gap
Client Properties Custom column/row templates
Native Library Paths
Beaninfo Search Path Display Name ~ Identifier | Column Specifica... Row Specification | Gap
eaninio search Fatns my line gap mylinegap fill:2dlu fill:2dlu
Check for Updates my paragraph gap myparagr... fill:10dlu fill: 10dlu
LayoutMap Initialization Code Add... Edit... Remove
Option Description Default
Automatically insert If enabled, JFormDesigner automatically inserts/removes gap columns/rows. On

/remove gap columns
/rows

JGoodies Forms version

Column/row templates
for new columns/rows

Column

Column gap

Row
Row gap

Custom column/row
templates

Required JGoodies Forms version for the created forms. auto-detect

Here you can specify the column and row templates that should be used when new
columns or rows are inserted.

The column template used for new columns. default

The column template used for new gap columns. label
component
gap

The row template used for new rows. default

The row template used for new gap rows. line gap

If the predefined templates does not fit to your needs, you can define your own here.
Since JGoodies Forms 1.2, you can add these custom column/row templates to the
global LayoutMap using the "LayoutMap Initialization Code" link.

-55-

JFormDesigner 8.2 Documentation

Custom column/row templates

mAdd Custom Column/Row Template X

Custom column/row template

Specify the custom column/row template information.

Display name: my line gap
Identifier: mylinegap
Use for: (Ocolumns Orows @ both gaps

Default alignment

Oleft Ocenter Oright @fill

Size
Odefault O preferred O minimum

@cgnstant 2% | Dialog units
minimum 05| | Dialog units
maximum 0, | Dialog units

Resize behavior

(®none
Oarow 15

Java code (optional)

Column code:

Row code:

Option Description

Display name The display name is used within JFormDesigner whenever the template is shown in combo boxes or
popup menus.

Identifier The (unique) identifier is stored in form files. Choose a short string. Only letters and digits are
allowed.
Use for Specifies whether the template should be used for columns, rows or both. Also specifies whether it

represents a gap column/row.

Default alignment The default alignment of the components within a column/row. Used if the value of the component
constraint properties "h align" or "v align" are set to DEFAULT.

Size The width of a column or height of a row. You can use default, preferred or minimum component
size. Or a constant size. It is also possible to specify a minimum and a maximum size. Note that the
maximum size does not limit the column/row size if the column/row can grow (see resize behavior).

Resize behavior The resize weight of the column/row.

Java code Optional Java code used by the Java code generator. Useful if you have factory classes for
ColumnSpecs and RowSpecs. Not available for JGoodies Forms 1.2 and later.

-56 -

GridBagLayout

On this page, you can specify GridBaglLayout related options.

JFormDesigner 8.2 Documentation

E Preferences

General GridBadL t
MigLayout rdcaglayou

FormLayout (JGoodies)

GridBagLayout Default properties for new columns/rows

Localization

Look and Feels

Configure Project Specific Settings...

null Layout Column: Alignment: fill, Min. Size: 0, Resize behavior: 0.0 Edit...

Row: Alignment: fill, Min. Size: 0, Resize behavior: 0.0 Edit...

Option Description Default
Default properties for Here you can specify the column and row properties that should be used when new
new columns/rows columns or rows are inserted.
Column The column properties used for new columns. fill:0:0.0
Row The row properties used for new rows. fill:0:0.0
null Layout
On this page, you can specify null layout related options.
[3] Preferences X
General L t
nu ayou
MigLayout Y
FormLayout (JGoodies) Configure Project Specific Settings...
GridBagLayout [E e
A
o Grid X step: 5.
Localization
Lock and Feels Grid Y step: 5%
[=] Java Code Generator Hint: Hold down the Shift key in the Design view to temporary disable grid
Templates S 2
Option Description Default
Snap to grid If enabled, snap to the grid specified below when moving or resizing a component in On
null layout.
Grid X step The horizontal step size of the grid. 5
Grid Y step The vertical step size of the grid. 5

-57-

Localization

JFormDesigner 8.2 Documentation

On this page, you can specify localization related options.

m Preferences

General
MigLayout
FormLayout (JGoodies)
GridBagLayout
null Layout
Lock and Feels
[=] Java Code Generator
Templates
Layout Managers
Localization
Binding
Code Style
Client Properties
Native Library Paths
BeanlInfo Search Paths
Check for Updates

Option

Rename resource keys
when renaming
components

Copy localized
messages when
copying components

Delete localized
messages when
deleting components

Delete localized
messages when
internalizing strings

Delete messages only if
key prefix is equal to
form's key prefix

Insert new messages

Format used for
generated keys

Separator used for
generated keys

Encoding for properties
files

Localization

Configure Project Specific Settings...

[“]Rename resource keys when renaming components

[“]Copy localized messages when copying components
Qelete localized messages when deleting components
Delete localized messages when internalizing strings

[“] Delete messages only if key prefix is equal to form's key prefix

Insert new messages: next to similar keys (ascending order)

Format used for generated keys: ${componentName}${sep}${propertyName}
Separator used for generated keys:
Encoding for properties files: UTF-8

Template for properties files:

Reset

#
Created by JFormDesigner on ${date}

Exclude properties from externalization:

contentType (javax.swing.JEditorPane)
nodePropertyName

Edit...

Description

If enabled, auto-rename resource keys when renaming components and
the resource key contains the old component name.

If enabled, duplicate localized strings in all locales when copying
components.

If enabled, auto-delete localized strings, that were used by the deleted
components, from all locales.

If enabled, auto-delete localized strings, that were internalized, from all
locales.

If enabled, messages will be auto-deleted only if their key prefix is equal to
the key prefix of the form.

Specifies where new messages will be inserted into properties files. "next
to similar keys" inserts new messages next to other similar keys so that
messages that belong together are automatically at the same location in
the properties file. "at the end of the properties file" always appends new
messages to the end of the properties file.

Format used when generating a resource key.

Separator used when generating a resource key.

Specifies encoding used for properties files. Since Java 9, UTF-8 is used by
default for reading properties files in applications. Java 8 uses ISO-8859-1. (
Stand-alone only; in IDE plug-ins the encoding specified for .properties
files in the IDE preferences is used)

- 58 -

Remove

Default

On

On

next to similar keys
(ascending order)

${componentName}
${sep}${propertyName}

UTF-8 if running in Java
9 or later; ISO-8859-1 if
running in Java 8

Option

Template for
properties files

Exclude properties
from externalization

JFormDesigner 8.2 Documentation
Description Default

Template used when creating new properties files.

Specify properties that should be excluded from externalization. Useful
when using auto-externalization to ensure that some string property
values stay in the Java code.

If the list is focused, you can use the Insert key to add a property or the
Delete key to delete selected properties.

Java Code Generator

On this page, you can turn off the Java code generator and specify other code generation options.

E Preferences

General

MigLayout

FormLayout (JGoodies)
GridBagLayout

null Layout

Localization

Look and Feels

Templates

Layout Managers

Localization

Binding

Code Style
Client Properties
Native Library Paths
BeanlInfo Search Paths
Check for Updates

Option

Generate Java source
code

Source compatibility

Explicit imports

Container blocks

Comments

Set component names

Use Eclipse code

B Java Code Generator

X

Java Code Generator

Configure Project Specific Settings...

Qenerate Java source code

Options

Source compatibility: (use JRE version)
[]Explicit imports
Container blocks
Comments

[JEclipse non-nls tags (//$NON-NLS-n$)
|:|InteIIiJ IDEA non-nls tags (//NON-NLS)
DNetBeans no-i18n tags (//NOI18N)

[]set component names [_]Use 'this' for member variables

Member variables prefix:

Modifiers
Class modifiers: public Edit...
Nested class modifiers: private Edit...
Variable modifiers: private Edit...
Event handler modifiers: private Edit...

Note: Class modifiers are used only when generating new classes. Event handler
modifiers are used only when generating new handler methods.

You can set modifiers per form in the (form) properties.

Description Default

If enabled, JFormDesigner generates Java source code when you save a form. On

Stand-alone: use
Java 8

IDE plug-ins: use
project setting

Specifies the compatibility of the generated source code. Besides generating
Java 1.x compatible source code, JFormDesigner can also use Java 5 (or later)
features in the generated source code (e.g. auto-boxing, @override, lambda
expressions, var, etc).

If enabled, the code generator adds explicit import statements (without '*') for ~ Off
used classes.

If enabled, the code generator puts the initialization code for each container On
into a block (enclosed in curly braces).

If enabled, the code generator puts a comment line above the initialization On
code for each component.

If enabled, the code generator inserts java.awt.Component.setName() Off
statements for all components of the form.

If enabled, the Eclipse code formatter is used to format the generated code. (Off

-59.-

JFormDesigner 8.2 Documentation

Option Description Default
formatter Eclipse plug-in only)
Eclipse non-nls tags (If enabled, the code generator appends non-nls comments to lines containing Off
//$NON-NLS-n$) strings. These comments are used by the Eclipse IDE to denote strings that
should not be externalized.
Intellij IDEA non-nls If enabled, the code generator appends non-nls comments to lines containing Off
tags (//NON-NLS) strings. These comments are used by Intelli] IDEA to denote strings that should
not be externalized.
NetBeans no-i18n tags (If enabled, the code generator appends non-nls comments to lines containing Off
//NOI18N) strings. These comments are used by the NetBeans IDE to denote strings that
should not be externalized.
Use 'this' for member If enabled, the code generator inserts 'this.' before all member variables. E.g. Off
variables this.namelLabel.setText("Name:");
Member variables Prefix used for component member variables. E.g. "m_".
prefix
Class modifiers Class modifiers used when generating a new class. Allowed modifiers: public public
, default, abstract and final.
Nested class modifiers ~ Class modifiers used when generating a new nested class. Allowed modifiers: private
public, default, protected, private, abstract, final and static.
Variable modifiers The default modifiers of the variables generated for components. Allowed private
modifiers: public, default, protected, private, static and
transient.
Event handler modifiers The default modifiers used when generating event handler methods. Allowed private

modifiers: public, default, protected, private, final and static.

You can set additional options per form in the "(form)" properties.

Templates (Java Code Generator)

This page contains templates that are used by the code generator when generating a new class. See Code
Templates for details about templates.

m Preferences

General

MigLayout

FormLayout (JGoodies)
GridBagLayout

null Layout
Localization

Look and Feels

[=] Java Code Generator

Templates

Layout Managers
Localization
Binding
Code Style
Client Properties
Native Library Paths
BeanlInfo Search Paths

P PP D Sy | TR P

Templates

Configure Project Specific Settings...

Code templates:

New...
Component Binding Initialization
Component 118n Initialization Edit...
Component Initialization
Empty Class v Remove
Inhsert Variable ~ Reset...

Selected template:

S5{modifiers}class ${class_name} ${extend3_declaration} {
${constructor_modifiers}${class_name}() {
initComponents () ;
}
${component_initialization}

S{variable s_de claration}

-60 -

JFormDesigner 8.2 Documentation

New: Create a new template for a specific superclass.

Edit: Edit the superclass of the selected user-defined template.

Remove: Remove the selected template. Only allowed for user-defined templates.

Reset: Reset the selected predefined template to the default.

Insert Variable: Insert a variable at the current cursor location into the selected template.

[3] New Template X
Superclass name: com.myproject.MyAbstractDialog Browse...
Copy from: Class v

Here you can create a new template for a specific superclass. It will be
used to generate new classes that are derived from the specified
superclass or from subclasses of the specified superclass.

Cancel

Layout Managers (Java Code Generator)

On this page, you can specify code generation options for some layout managers.

E Preferences

General

MigLayout

FormLayout (JGoodies)
GridBagLayout

null Layout
Localization

Look and Feels

[=] Java Code Generator

Client Properties
Native Library Paths
Beanlnfo Search Paths

Templates Make anonymous PanelBuilder JPanel transparent
Localization ST

Binding [[]Use empty GridBagConstraints constructor

Code Style

Layout Managers
Configure Project Specific Settings...
MigLayout
[[]Use API constraints in generated code

FormLayout (JGoodies)

[Juse PanelBuilder in generated code

GrouplLayout

Generation Style: | (use source compatibility) v

TableL t
Check for Updates bl e
Package: info.clearthought.layout Reset

Option Description Default
Use API constraints in If enabled, then MigLayout API is used to create constraints. Otherwise strings Off
generated code are used.
Use PanelBuilder in If enabled, the PanelBuilder class of JGoodies Forms is used for FormLayout. Off
generated code
Make anonymous If enabled, the JPanel of the PanelBuilder is made transparent. Off
PanelBuilder JPanel
transparent
Use empty If enabled, the empty GridBagConstraints constructor is used in the generated Off
GridBagConstraints code, which is necessary for Java 1.0 and 1.1 compatibility. Since Java 1.2,
constructor GridBagConstraints has a constructor with parameters, which is used by

default.
GroupLayout Specifies whether class javax.swing.GroupLayout is used, which is part of Java use source
Generation Style 6 and later. Or whether org.jdesktop.layout.GroupLayout from the Open compatibility

Source Swing Layout Extension library swing-layout.jar is used, which is also
available for Java 1.4 and 5.

-61 -

JFormDesigner 8.2 Documentation

Option Description Default

(see Java Code
Generator
preferences page)

TableLayout package Package name used by the Java code generator for TableLayout. Change this info.clearthought.
only if you have a copy of the original TableLayout in another package. layout

Localization (Java Code Generator)

On this page, you can specify code generation options for localization.

[3] Preferences X

General L.
Localization

MigLayout

FormLayout (JGoodies) Configure Project Specific Settings...

GridBagLayout Initialization

null Layout [[]Generate initComponentsI18n() method

Localization

Look and Feels Code templates to access resource bundles

[=] Java Code Generator 'getBundle’ template: ResourceBundle.getBundle(${bundleName}) Reset
Templates

'getString' template: ${bundle}.getString(${key}) Reset
Layout Managers

To change the templates for a specific form only, select the "(form)" node in the

Binding Structure view and expand the "Code Generation" category in the Properties view.
There you can set these templates for the active form.

Code Style
Option Description Default
Generate If enabled, the code generator puts the code to initialize the localized texts Off
initComponents|18n() into a method initComponentsl18n(). You can invoke this method from your
method code to switch the locale of a form at runtime. You can set this options also
per form in the "(form)" properties.
'getBundle' template Template used by code generator for getting a resource bundle. ResourceBundle.
getBundle
(${bundleName})
'getString' template Template used by code generator for getting a string from a resource bundle. ${bundle}.getString
(${key})
Binding (Java Code Generator)
On this page, you can specify code generation options for Beans Binding (JSR 295).
[3] Preferences X
[=] Java Code Generator Binding
Templates
Layout Managers Configure Project Specific Settings...
Localization Initialization
|:| Generate initComponentBindings() method
Option Description Default
Generate If enabled, the code generator puts the code to create bindings into a method Off

initComponentBindings() initComponentBindings(). You can set this options also per form in the "(form)"
method properties.

-62-

JFormDesigner 8.2 Documentation

Code Style (Java Code Generator)
Stand-alone: On this page, you can specify code style options, which are used for code generation.

IDE plug-ins: This page is not available in IDE plug-ins because IDEs already have preferences that control code
style. JFormDesigner uses the code style settings from IDE projects or preferences.

E Preferences X
MigLayout
) Code Style
FormLayout (JGoodies)
GridBagLayout Configure Project Specific Settings...
null Layout Indentation
Localization Indent size: 4

4

Look and Feels

3

Tab size: 4
[“]Use tab character

4

[=] Java Code Generator

Templates

Layout Managers Other

Localization . .

Lo Line separator: Platform Default v| (applies to new files only)

Binding

Code Style Encoding: Platform Default v| (platform default is "windows-1252")
Option Description Default
Indent size The number of spaces used for one indentation level. 4
Tab size The number of spaces that represents one tabulation. 4
Use tab character Specifies whether the tab character (\t) is used for indentation or only space On

characters.

Line separator The line separator used for newly created .java and .properties files. Platform default
Encoding The character encoding used for reading and writing Java files. Platform default

Client Properties

On this page, you can can define client properties, which can be set in the Properties view.

[3] Preferences X

Localizati = =
ocalization Client Properties

Look and Feels

=] Java Code Generator Configure Project Specific Settings...
Templates

Define client properties that you can set in the Properties view. See
Layout Managers JComponent.putClientPrope for details about client properties.

Localization Client properties:
Binding Key Value Type Component Class
Code Style hideActionText java.lang.Boolean javax.swing.AbstractButton

Client Properties html.disable java.lang.Boolean

Native Library Paths
BeanInfo Search Paths
Check for Updates

Add... Edit... Remove

-63 -

JFormDesigner 8.2 Documentation

If the client properties list is focused, you can use the Insert key to add a client property or the Delete key to
delete selected client properties.

[3] Add Client Property X

Client property name and type
Specify a JComponent client property.

Key: hideActionText

Component class(es): |javax.swing.AbstractButton Browse...

If component class is not set, then the client property is shown for all components.

Value type: java.lang.Boolean v

Predefined values:

(one value per line;
only if value type is
java.lang.String)

Allow only predefined values

Property editor class: Browse...

? Conce

Option Description
Key The key that identifies the client property.
Component class(es) The component class(es) to which the client property belongs. E.g. if set to javax.swing.JButton, then

the client property is shown in the Properties view for buttons and for subclasses of JButton. To
specify multiple classes, separate them with commas. If not specified, the client property is shown
for all JComponent components.

Value type The type of the client property value. You can select one of the common types (String, Boolean,
Integer, etc) from the combo box or enter the class name of a custom type.

Predefined values If the value type is java.lang.String, then you can specify predefined values for the client property.
When editing the client property in the Properties view, a combo box that contains these values is
shown. The combo box is editable by default. Select the "Allow only predefined values" check box to
make the combo box not-editable.

Property editor class Optional class name of a property editor that should be used when editing the client property in the
Properties view.

-64-

JFormDesigner 8.2 Documentation

Native Library Paths

On this page, you can specify the locations of custom JavaBeans that use native libraries and you can specify the
folders where to search for the native libraries.

Note: When removing or changing paths, a restart of JFormDesigner (or the IDE) is probably necessary to make
the changes work.

m Preferences X
GridBagLayout . q
ridbagtayod Native Library Paths
null Layout
Localization Specify the locations of your custom JavaBeans, which use native libraries. And

specify the locations of your native libraries.
Look and Feels

= Java Code Generator Classpath for JavaBeans, which uses native libraries:

: D:\Java\MyProject\lib\gluegen-rt.jar
D:\Java\MyProject\lib\jogl.jar

Templates

Layout Managers

Localization Add... Edit... T —
Binding
Code Style Native Library Path:
Client Properties [D:\Java\MyProject\lib
Native Library Paths
Beanlnfo Search Paths Add.. Edit... Remove
Check for Updates
Option Description
Classpath for JAR files or folders containing .class files, which are using native libraries. They must be specified
JavaBeans, which use here to ensure that the native libraries are loaded from a special class loader only once.
native libraries
Native Library Path Folders used to search for native libraries.

Beanlnfo Search Paths

On this page, you can specify package names that will be used for finding BeanInfo classes and property editors.

[3] Preferences X

Localization

BeanInfo Search Paths
Look and Feels

[=] Java Code Generator Specify package names that will be used for finding BeanInfo classes and property

editors. See Introspector.setBeanInfoSearchPath() and

Templates PropertyEditorManager.setEditorSearchPath() for details.

Layout Managers
BeanlInfo search path:

Localization

Binding com.myapp.beaninfos
com.myapp.misc.beaninfos

Code Style

Client Properties .
Property editor search path:

Native Library Paths
Beanlnfo Search Paths com.myapp.ec!ltors .
com.myapp.misc.editors
Check for Updates

Option Description

BeanlInfo search path Package names that will be used for finding BeanInfo classes. Only necessary if the Beaninfo class is
not in the same package as the component class to which it belongs. See java.beans.Introspector
and Introspector.setBeanInfoSearchPath() for details.

Property editor search ~ Package names that will be used for finding property editors. Only necessary if the property editor is

path not in the same package as the property type to which it belongs. See java.beans.
PropertyEditorManager and PropertyEditorManager.setEditorSearchPath() for details.

-65 -

https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/Introspector.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/Introspector.html#setBeanInfoSearchPath(java.lang.String%5B%5D)
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/PropertyEditorManager.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/PropertyEditorManager.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/PropertyEditorManager.html#setEditorSearchPath(java.lang.String%5B%5D)

JFormDesigner 8.2 Documentation

Check for Updates

This page allows you to specify whether JFormDesigner should check for updates and new versions. Click the
"Check Now" button to check for updates immediately.

[3] Preferences X

COCOTEaTToTT

Look and Feels Check for Updates

[=] Java Code Generator
Check for updates and new versions: Weekly v Check Now
Templates

Layout Managers Last checked for updates on September 2, 2016.

Localization [JUse HTTP proxy to connect to the update server
Binding
Code Style JFormDesigner Update Available
Client Properties O An update for JFormDesigner is available: 6.0.1 (Build 99).

Native Library Paths Change Log Download

BeanlInfo Search Paths O A (free) new version of JFormDesigner is available: 7.0 (Build 99).

What's New Download
Check for Updates ats New Downloa

- 66 -

JFormDesigner 8.2 Documentation

7 IDE Integrations

JFormDesigner is available as stand-alone application and as plug-ins for various IDEs. The IDE plug-ins completely
integrate JFormDesigner into the IDEs.

Following IDE plug-ins are available:

Eclipse plug-in
Intelli) IDEA plug-in
NetBeans plug-in

Other IDEs

If there is no JFormDesigner plug-in for your favorite IDE, you can use the stand-alone edition of JFormDesigner
side by side with your IDE.

IDE interworking with stand-alone edition

Care must be taken because you edit the Java source in the IDE and JFormDesigner stand-alone also modifies the

Java source file when generating code for the form. As long as you follow the following rule, you will never have a
problem:

Save the Java file in the IDE before saving the form in JFormDesigner stand-alone.

Your IDE will recognize that the Java file was modified outside of the IDE and will reload it. Some IDEs ask the user
before reloading files, other IDEs silently reload files.

If you have not saved the Java file in the IDE, then you should prevent the IDE from reloading it. In this case save
the Java file in the IDE and then use Generate Java Code in JFormDesigner stand-alone.

JFormDesigner generates Java code when you either Save the form or select Generate Java Code. JFormDesigner
does not hold a copy of the Java source in memory. Every time JFormDesigner generates Java code, it first reads
the Java source file, parses it, updates it and writes it back to the disk.

-67-

JFormDesigner 8.2 Documentation

7.1 Eclipse plug-in

This plug-in integrates JFormDesigner into Eclipse and other Eclipse based IDEs.

Benefits
Using this plug-in has following benefits compared to JFormDesigner stand-alone edition:

* Fully integrated as editor for JFormDesigner .jfd files. Create and design forms within Eclipse. No need to
switch between applications.

® Uses the source folders and classpath of the current Eclipse project. No need to specify them twice.

® The Java code generator updates the .java file in-memory on each change in the designer. You can design
forms and edit its source code without the need to save them (as necessary when using JFormDesigner stand-
alone edition).

* Folding of generated GUI code in Java editor.
® @Go to event handler method in Java editor.

® Two-way synchronization of localized strings in designer and in properties file editors. Changing localized
strings in the designer immediately updates the .properties file in-memory and changing the .properties file
updates the designer.

® Copy needed libraries (MiglLayout, JGoodies Forms, TableLayout, etc) to the project and add them to the
classpath of the current Eclipse project. Optionally include source code and Javadoc.

® Integrated into refactoring:
* Copy, rename, move or delete .jfd files when coping, renaming, moving or deleting .java files.

® JFormDesigner .jfd files and palette are updated when using Refactor > Rename, Refactor > Move
, Refactor > Change Method Signature or Rename in workspace on packages, classes, fields
and methods.

® Rename component in Design view allows using Eclipse Java refactoring to rename all occurrences of
the component name (including Preview).

® Rename/move .properties files updates .jfd and .java files.

* Rename nested class updates .jfd file.

- 68 -

https://www.eclipse.org/

JFormDesigner 8.2 Documentation

User interface

The screenshot below shows the Eclipse main window editing a JFormDesigner form. JFormDesigner adds the
menu Form to the main menu, which is only visible if a JFormDesigner form editor is active.

& MyWorkspace - Java - MyProject/src/com/myapp/FormsTutorial jfd - Eclipse SDK - O X
File Edit Navigate Search Project Form Run Window Help
i 8] -5‘&5@@5#'o’%’f%’@‘?@‘?ﬂ'i'} - Bt R R .OuickAccessé =gl
[2 Package Expl.. ©2 ~ [[FormsTutorialjfd 57 FormsTutorial java — O B= outline 2 B~ O
. S 7 Alesr ﬁ » Windows v (no locale) i - |,rﬂ E (form)r ~
v MyProject " l}e Selection Mode > 0 e 1 > 2 < 3 :lnt‘hlf (MigLayout] "
v [src r=n . . T generalSeparator ("General
v‘ =B g arquee Selection 2 General - | — - [ElmmpanyLabel ("Company")
' com.myaPP. @Choose Bean... % CompanyE : @ [i8companyField
AddressAJava Components 23 Contac — (&) contactlabel (“Contact”)
>] AddressPane (352] JLabel : ~[T1 contactField
> E FormsTutoriz [T]] JTextField 2| Pl | 1+ propellerSeparator ("Propel v
N - 2 Propeller -
> FormsTutoriz [JComboBox ; Pe! = [5 I < >
») JavaGeneralf [OK] JButton % PTL (kW] IPower[W) = S ="
> [J] OptionsPane -t 2 R [mm] || Dmm] Properties
i@AddressPane ? Cctntamers ? FALE 2 12 ‘ Q‘ Z -
=/ Bundle_de.pt > Windows < Name Value
El Bundle.prope > Menus 7 Name companyField ~
|Z| ContactForm > JGoodies 3 Class ITextField
= m > Binding 3 Layout Cons... cell 1131
B FormsTutoriz Bindings (1)
|=| temPanel.foi > Custom 0 Events (0)
F3l JavaGeneralF — = [lProperties (9)
i indings % + + — + 38— O P
2| OptionsPane JFormDesigner Bindings - E | | - background [] white
&= TableLayoutl Source Target Options columns 0
T TaskViewjd pamgGroup ediwble [true
: S o0t - compeny ——+ companyied -t I | e e
> H3 com.myapp2x . formData - contact “ contactField - text font Tahoma 21
5 il Dafavancad |ikearia fD d . black
< > ! re_grour? ; acl v
i1

A JFormDesigner editor consists of:

* Toolbar: Located at top of the editor area.

* Palette: Located at the left side.

* Design View: Located at the center.

® Structure View: Located in Eclipse's Outline view.

® Properties View: Located in Eclipse's Properties view.

Bindings View: Located below the Design view. This view is not visible by default. Click the Show Bindings
View button (¢") in the toolbar to make is visible.

* Error Log View: Automatically opens on errors in a view at the bottom.

Creating new forms

To create a new form, click the New JFormDesigner Form (F_n?) button in the Eclipse toolbar.

Search Project Run Window
Iﬂgﬁ #\5' v 0 v % > it

‘New JFormDesigner Form |

- 69 -

JFormDesigner 8.2 Documentation

You can also create new forms in Eclipse's Package Explorer view. First select the destination package or folder,
then invoke Eclipse's New command and select Other, which opens Eclipse's New dialog. Then choose
JFormDesigner Form from the list of wizards and click Next to proceed.

= New | X

Select a wizard —

Create a JFormDesigner form

Wizards:
type filter text

@Class ~
@Interface

@Java Project

¥ Java Project from Existing Ant Buildfile

?‘quFormDesigner Form

!ﬁPIug—in Project v

® < Back Finish Cancel

In the New JFormDesigner Form dialog, enter the form name (which is also used as class name), choose a
superclass, a layout manager and set localization options.

Open forms for editing

You can open existing forms the same way as opening any other file in Eclipse. Locate it in Eclipse's Package
Explorer view and double-click it.

Go to Java code / Go to form

JFormDesigner adds a button to Eclipse's main toolbar that enables you to switch quickly from a JFormDesigner
form editor to its Java editor and vice versa. If a form editor is active, then the button is named Go to Java code (@
). If a Java editor is active, then it is named Go to JFormDesigner form (*5)). You can also use Ctrl+Shift+D (Mac:
Shift+Command+D).

Search Project Form Run Window Help Refactor Navigate Search Project Run Window Help
A0 QWG S HE R0 QG (S PG

JGO to Java code 'FormsTutorial java’ (Ctr|+Shift+D)I ,‘Go to JFormDesigner form 'FormsTutorial jfd’ (Ctr|+Shift+D)|

Code folding
To move the generated code out of the way, JFormDesigner folds it in the Java editor.
F5l FormsTutorial jfd [*FormsTutorial java & = B8
public class FormsTutorial extends JPanel { ~

= public FormsTutorial() {
initComponents();

}

private void initComponents() {
// JFormDesigner - Component initialization - DO NOT MODIFY //GEN-BEGII

}

i // JFormDesigner - Variables declaration - DO NOT MODIFY //GEN-BEGIN:varial
} v

-70 -

Convert NetBeans and IntelliJ IDEA forms

JFormDesigner 8.2 Documentation

You can convert existing NetBeans and Intelli] IDEA forms to JFormDesigner forms. Right-click on the form file (or
any container) and select Convert to JFormDesigner Form.

) JavaGeneralPrefsPapyg
4] OptionsPaneljava 7
5| AddressPanel.jfd \\‘,)c;
=| Bundle_de.properti

=l Bundle.properties .
= ContactForm.form 3°
-5 FormsTutorial.jfd
=| ItemPanel.form
5 JavaGeneralPrefsPa
= OptionsPanel.form

ferenced Libraries

E System Library [jre1.8

Import...
Export...

Refresh

Assign Working Sets...

F5

Convert to JFormDesigner Form... %
>

Run As
Debug As
Team
Compare With
Replace With

Properties

Alt+Enter

£ Convert to JFormDesigner Form X

Convert 3 forms to JFormDesigner forms?

Generate Java code

[Form class extends top-level container (Intelli) IDEA forms only)

[Delete old form files

Open converted forms

Form files:

Form
ContactForm.form
[temPanel.form
OptionsPanel.form

Select All

Directory Type
/MyProject/src/com/myapp IntelliJ IDEA
/MyProject/src/com/myapp NetBeans
/MyProject/src/com/myapp IntelliJ IDEA

Deselect All Cancel

When converting an Intellij IDEA form, JFormDesigner inserts its own generated GUI code into the existing Java
class and removes Intelli] IDEA's GUI code.

Preferences

The JFormDesigner preferences are fully integrated into the Eclipse preferences dialog. Select Window >
Preferences from the menu to open it and then expand the node "JFormDesigner" in the tree. See Preferences for

details.

You can also set project specific settings in the Eclipse project dialog. Select Project > Properties from the menu
to open it and then expand the node "JFormDesigner" in the tree. See Preferences for details.

Keyboard shortcuts

You can assign shortcut keys to JFormDesigner commands in Eclipse's keys preferences. Select Window >
Preferences > General > Keys to open it. Search for "JFormDesigner" to find JFormDesigner commands.

-71 -

JFormDesigner 8.2 Documentation

7.2 IntelliJ IDEA plug-in

This plug-in integrates JFormDesigner into Jetbrains Intellij IDEA (Community and Ultimate Editions).

Benefits
Using this plug-in has following benefits compared to JFormDesigner stand-alone edition:

* Fully integrated as editor for JFormDesigner .jfd files. Create and design forms within Intelli] IDEA. No need to
switch between applications.

® Uses the source folders and classpath of the current Intelli] IDEA project/module. No need to specify them
twice.

* The Java code generator updates the .java file in-memory on each change in the designer. You can design
forms and edit its source code without the need to save them (as necessary when using JFormDesigner stand-
alone edition).

* Folding of generated GUI code in Java editor.
@Go to event handler method in Java editor.

* Two-way synchronization of localized strings in designer and in properties file editors. Changing localized
strings in the designer immediately updates the .properties file in-memory and changing the .properties file
updates the designer.

* Copy needed libraries (MigLayout, JGoodies Forms, TableLayout, etc) to the project and add them to the
classpath of the current Intelli] IDEA project/module. Optionally include source code and Javadoc.

* Assign shortcut keys to most JFormDesigner commands in Intelli) IDEA's keymap settings.

User interface

The screenshot below shows the Intelli) IDEA main window editing a JFormDesigner form.

] MyProject - [D:\Java\MyProject] - [MyProject] - ..\src\com\myapp\FormsTutorial.jfd - Intelli) IDEA 2016.2.4 - O X
File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help
ODHEHO ¢#4 XxOM QA &= |~ PEaEE ¥E L w ? A Q
5 Packages v €3 == | ¥~ 1< | 5 FormsTutorial,jfd x | (€ FormsTutorialjava X ¥
@ . - N - x
2 MyProject S8 ¥l v | Intelli) n (4] (no locale) \ T v i T = BN 2
= com = =
[} [Selection Mode >0 hid 1‘ > 2 @ 3 £8l (form) =

| Myapp {1 Marquee Selec.. 2 General [this [MigLayout]
@ (€& Address @& Choose Bean... - {jgeneralSeparator 5 "' m
’g (€) & AddressPanel Components 23 T Company@ E \ﬂcompanyL?be\ Compan z
5 — . e o [T companyField <
& |za| AddressPanel.jfd [JLabel a — i
R . 2 Contact | 4] contactLabel 2
¢ jil Resource Bundle ‘Bu [T[] JTextField E“ contactField 3

ContactForm.form =] JComboBox I vmmallarC A avabar (D g

2 Propeller = |4 |a Dy

© & FormsTutorial JB““O” £ Jv:‘ 12 QW

75 FormsTutorial jfd (T 9 4 PTI [kW] \:l Power [kW] Name Value

(© & FormsTutorialDat: [| JPanel a R [mm] D [mm] Name companyfield

[mm mm H

[temPanel.form [JTabbedPane J Class JTextField

© & JavaGeneralPrefsk £ JscrollPane L?y:}lt Con-..cell 1131

- H JsplitPane Bindings

L_u JavaGeneralPrefsPagi — ~=F"" L et formData - c..

|55 TableLayoutUl jfd Windows 6 Events

B TaskView,jfd Menus 7 El Properties

OptionsPanel JGoodies 3 background [| white

myapp2x Binding 3 columns 0O
b Bk | ihrariee Custom 0 editable true
« |JFormDesigner Bindings ﬁ" i:
]
’g’ Source Target Options
g bindingGroup
& + formData - company # companyField - text
e formData - contact # contactField - text
JFormDesigner Bindings &9 JFormDesigner Error Log “26:TODO [E Terminal Q Event Log

A JFormDesigner editor consists of:

* Toolbar: Located at top of the editor area.

-72 -

https://www.jetbrains.com/
https://www.jetbrains.com/idea/

JFormDesigner 8.2 Documentation

* Palette: Located at the left side.

* Design View: Located at the center.

Structure View: Located at the upper right. You can hide this view in the editor and show it instead in Intelli)
IDEA's Structure tool window by unselecting Show Structure in Editor (**).

* Properties View: Located at the lower right.

Bindings View: Located below the Design view. This view is not visible by default. Click the Show Bindings
View button (¢") in the toolbar to make is visible.

Error Log View: Automatically opens on errors in a tool window at the bottom. This view is not visible in the
above screenshot.

Creating new forms

You can create new forms in any of Intellij IDEA's project views. First select the destination package or folder, then
invoke IDEA's New command and choose JFormDesigner Form.

ﬂ MyProject - [D:\Java\MyProject] - Intelli) IDEA 2016.2.4
Eile Edit View Navigate Code Analyze Refactor Build Run Tools VCS Wir
DHO ¢4 XMW QR &> M- > &
= Packages MR - 30 o
2, .
6_9 MyProject
E com Search Everywhere Dout
myapp
o c New 4 (C)Java Class
£ c Y cut Ctrl+X & Kotlin File/Class
] o6 Cut
& B Ac [1] Copy ctrl+C [l File
~
vy il R¢ Copy Path Ctrl+Shift+C Package
Ce Copy as Plain Text B8 JFormDesigner Formk

In the New JFormDesigner Form dialog, enter the form name (which is also used as class name), choose a
superclass, a layout manager and set localization options.

Open forms for editing

You can open existing forms the same way as opening any other file in Intelli] IDEA. Locate it in any of Intelli) IDEA's
project views and double-click it.

Go to Java code / Go to form

JFormDesigner adds a button to Intelli) IDEA's main toolbar that enables you to switch quickly from a
JFormDesigner form editor to its Java editor and vice versa. If a form editor is active, then the button is named Go

to Java code (=). If a Java editor is active, then it is named Go to JFormDesigner form (:'i-EJ). You can also use
Ctrl+Shift+D (Mac: Shift+Command+D).

Go to JFormDesigner form 'FormsTutorial,jfd" (Ctrl+Shift+D)

Go to Java code 'FormsTutorial java' (Ctrl+Shift+D)
EOE w7 [o e W 7 [&d

-73-

JFormDesigner 8.2 Documentation

Code folding

To move the generated code out of the way, JFormDesigner folds it in the Java editor.

F5 FormsTutorialjfd % () FormsTutorialjava %

K

public class FormsTutorial extends JPanel {
public FormsTutorial() {
I initComponents () ;

private wvoid initComponents () {
// JFormDesigner - Component initialization - DO NOT MODIFY

// JFormDesigner - Variables declaration - DO NOT MODIFY

Convert IntelliJ IDEA and NetBeans forms

You can convert existing Intelli] IDEA and NetBeans forms to JFormDesigner forms. Right-click on the form file (or
any container) and select Convert to JFormDesigner Form.

i Add C t to Palette...
< FormsTutorial empenent fo Falette 9] Convert to JFormDesigner Form X
E FormsTutorial jfd
< FormsTutorialDat: Optimize Imports Ctrl+Alt+C Convert 3 forms to JFormDesigner forms?

E ItemPanel.form Delete... Delete
© % JavaGeneralPrefsP =] Mark as Plain Text Generate Java code

[dl JavaGeneralPrefsPage Make Module 'MyProject’ [] Form class extends top-level container (IntelliJ IDEA forms only)
E TableLayoutUljfd
E TaskView,jfd

B OptionsPanel

Local History * | [] Delete old form files

() synchronize 'OptionsPanel.form’
Open converted forms
Show in Explorer

c OptionsPanel)

B e T— File Path Ctrl+Alt+F12 Form files:
[“Li Compare With... Ctrl+D e Directory Type
@Create Gist... ContactForm.form D:\Java\MyProject\src\com... Intelli) IDEA

B Convert to JFormDesigner Form... ltemPanel.form D:\Java\MyProject\src\com... NetBeans
OptionsPanel.form D:\Java\MyProject\src\com... Intelli) IDEA
Select All | ‘ Deselect All “ ‘ Cancel

When converting an Intellij IDEA form, JFormDesigner inserts its own generated GUI code into the existing Java
class and removes Intelli] IDEA's GUI code.

Settings

JFormDesigner uses the term "Preferences" instead of Intelli] IDEA's "Settings". The JFormDesigner preferences are
fully integrated into the Intelli] IDEA settings dialog. Select File > Settings from the menu to open it and then select
the "JFormDesigner" page. To set project specific settings, select the subpage named "Project Specific". See
Preferences for details.

Keyboard shortcuts

You can assign shortcut keys to most JFormDesigner commands in Intelli] IDEA's keymap settings. Select File >
Settings > Keymap to open it. In the actions tree expand Plug-ins > JFormDesigner.

-74 -

7.3

JFormDesigner 8.2 Documentation

NetBeans plug-in

This plug-in integrates JFormDesigner into NetBeans.

Benefits

Using this plug-in has following benefits compared to JFormDesigner stand-alone edition:

Fully integrated as editor for JFormDesigner .jfd files. Create and design forms within NetBeans. No need to
switch between applications.

Uses the source folders and classpath of the current NetBeans project. No need to specify them twice.

The Java code generator updates the .java file in-memory on each change in the designer. You can design
forms and edit its source code without the need to save them (as necessary when using JFormDesigner stand-
alone edition).

Folding and guarding of generated GUI code in Java editor.
Go to event handler method in Java editor.

Two-way synchronization of localized strings in designer and in properties file editors. Changing localized
strings in the designer immediately updates the .properties file in-memory and changing the .properties file
updates the designer.

Automatically add needed libraries (MigLayout, JGoodies Forms, TableLayout, etc) to the project.

Integrated into refactoring: Copy, rename, move or delete .jfd files when coping, renaming, moving or
deleting .java files.

User interface

The screenshot below shows the NetBeans main window editing a JFormDesigner form.

) MyProject - MetBeans IDE 2.1 - O x
File Edit View Mevigate Sowrce Refactor Bun Debug Profile Team Iools Windew Help Q- Search {Cti41)
R l=L He X e DA T O
Brojects x|F||es — B FormsTutorialjava x| ¥ O | properties x| -
paypregect ~ Searce Desan | [- |OF by’ |- | BN
-h LEWE Packages Q Selection Made . &1 [+ 2 [# : | Mame value
= Oy a0 * Marguee Select.,. |2 = I Name companyField
C-[E Addeessjave EU Choase Bean... ned 1 == . Class TextField
[# Addressoanel java 3 Curnuanvi § [Layout Consta. cell 12131
S8 Bunde.properties v Components 2 o =] Bindings (!
o[E-LII I:lc.l:l:p rti i Labe i L et formData - com
) ll_ nde_ Dmf:m 5 El-] TextFeld Events :.'-)
[contactForm. (Bl XComboBox =] Bromeler 1 El Properties (2
[FormsTutorial.javas] Jutto =y T I 1 background [white
[e 3 PTL[AW] Power k] columns i
< ¥ . o= |] !] { -
» Contaners EN e T 1] editable B true
- T R [mm] 0 [mm]
Navigator Struct... X = b Windows L enabied B true
- I - . font Tahoma 11
Tz enus foreground W black
= {farm) n || > Y6ondes 2 horizontlAl... LEADING
= I_' s [MigLayout] » Binding 3 text
H I} generalSeparator (Ce % Cusbom o toalTipTesxt
I:lt companyLabel {"Comps Bl Expert Propertes (==
i mﬂ Bindings = | — || @ rRead-only Properties (29
-l contact.abel [Contac + [Sowrce ESDEN Options | | & Code Generation {13}
---II‘_-:mntatflEId + bindingGroup
1! propelerSesarstor [| formiats - company ¢ [companyfield fexe] |
& ISl = ¥ — | formzata - contact =+ contacteld - text
1) FH |

AJFo

rmDesigner editor consists of:

Toolbar: Located at top of the editor area.
Palette: Located at the left side.
Design View: Located at the center.

Structure View: Located at the lower left.

-75-

https://netbeans.apache.org/

JFormDesigner 8.2 Documentation

® Properties View: Located at the right side.

Bindings View: Located below the Design view. This view is not visible by default. Click the Show Bindings
View button (¢") in the toolbar to make is visible.

* Error Log View: Automatically opens on errors in a view at the bottom.
Creating new forms

You can create new forms using NetBeans's New File command. In the category Swing GUI Forms choose
JFormDesigner Form and click Next to proceed.

) Mew File ¥
Steps Choose File Type
;. Choose File Type Project: | & MyProject >
Q, Filter:
Categories: File Types:
el) Java A =i @ JFormDesigner Form L
i)} Swing GUI Forms IDialog Form
i)} JavaBeans Objects w g'FrlamE F“c_:rm _ v
Description:
Creates a new JFormDesigner form. In the wizard, you can specify the &y
superdass {panel, dialog, frame, etc), the layout manager and localization %

= Back Finish Cancel Help

Open forms for editing

You can open existing forms the same way as opening any other file in NetBeans. Locate it in NetBeans's Project
view and double-click it.

Source / Design

The Source and Design toggle buttons in the editor toolbar enable you to switch from a JFormDesigner form
editor to its Java editor and vice versa.

E] FormsTutorial. java >

Source | Design | - | | v| o]
[+ Selection Mode =z

0
[—

-76 -

JFormDesigner 8.2 Documentation

Convert NetBeans and IntelliJ IDEA forms

You can convert existing NetBeans and IntelliJ IDEA forms to JFormDesigner forms. Right-click on the form file (or
any container) and select Tools > Convert to JFormDesigner Form.

: El Fon [
: [Fon Lz 2 f:l Convert te JFermDesigner Form
i [e Delst Entf
| I_ . -r Fe " Conwert 3 forms to JFormDesigner forms?
! = Refactor ¥
i Y opy e \
i = Tab Comoile Pack k9 &) Generate Java codel
: G Ta ompile Package
P T Tao Test Package e :I Earm class sxtends I:pg-he-m-l conlaresr I:inh;‘-li_] TDEA Farmes ui',':l
{ R commy T B] Detete ald form files
H Run Selenium Tests X
Bt TestPadag . & Open converted forms
- ; Histary >
- | g Libraries
i Test L Forg files:
e TESTLEE gl 5 Apply Diff Patch... =
Form Directory Type
otk ContactForm.form D:JavaMyProject/srcfoom/myapp Intelid 11
Open in Terminal [Z] MemPanelform DeflavaMyProject/ercicom/myapp NetSean
OptionsFanel.form [JavaMyProject/srcfoomfmyapp Intelid I
Convert to JFermDesigner Form.. -
Select Al Deselect Al [ok]| cac
Create/Update Tests

When converting an Intellij IDEA form, JFormDesigner inserts its own generated GUI code into the existing Java
class and removes Intelli] IDEA's GUI code.
Options

JFormDesigner uses the term "Preferences" instead of NetBeans "Options". The JFormDesigner preferences are
fully integrated into the NetBeans options dialog. Select Tools > Options from the menu to open it and then select
the "JFormDesigner" page. See Preferences for details.

You can also set project specific options in the NetBeans project dialog. Select File > Project Properties from the
menu to open it and then expand the node "JFormDesigner" in the tree. See Preferences for details.
Keyboard shortcuts

You can assign shortcut keys to some JFormDesigner commands in NetBeans keymap options. Select Tools >

Options > Keymap to open it. Click on the Category column to sort key bindings by category name and scroll to
the JFormDesigner category.

-77 -

JFormDesigner 8.2 Documentation

8 Layout Managers

Layout managers are an essential part of Swing forms. They lay out components within a container.
JFormDesigner provides support for following layout managers:

® BorderLayout

“ BoxLayout

® CardLayout

® FlowLayout

* FormLayout (JGoodies)

* GridBaglLayout

® GridLayout

® Grouplayout (Free Design)
* HorizontalLayout (SwingX)
* Intelli) IDEA GridLayout

* MigLayout

* null Layout

® TableLayout

® VerticalLayout (SwingX)

How to choose a layout manager?

For "normal" forms use either one of the grid-based layout managers (MigLayout, FormLayout, TableLayout or
GridBaglayout) or use "Free Design" (GroupLayout). Each layout manager has its advantages and disadvantages.
MigLayout, FormLayout and TableLayout are open source and require that you ship an additional library with your
application.

* MiglLayout has most features (units, alignment, grouping, docking, flowing, in-cell flow and more).

® FormlLayout has many features (dialog units, column/row alignment, column/row grouping), but may have
problems if a component spans multiple columns or rows and can not handle right-to-left component
orientation.

® TableLayout does not have these limitations, but has fewer features than FormLayout.

® GridBagLayout is the weakest of these four grid-based layout managers, but JFormDesigner hides its
complexity and adds additional features like gaps. Use GridBagLayout if you cannot use MigLayout,
FormLayout or TableLayout.

® Grouplayout (Free Design) allows you to lay out your forms by simply placing components where you want
them. Visual guidelines suggest optimal spacing, alignment and resizing of components.

For button bars use MigLayout, FormLayout, TableLayout, GridBagLayout or FlowLayout.

To layout a main window, use BorderLayout. Place the toolbar to the north, the status bar to the south and the
content to the center.

For toolbars use JToolBar, which has its own layout manager (based on BoxLayout).

For radio button groups, BoxLayout may be a good choice. Mainly because JRadioButton has a gap between its
text and its border and therefore the gaps provided by FormLayout, TableLayout and GridBagLayout are not
necessary.

-78 -

Change layout manager

JFormDesigner 8.2 Documentation

You can change the layout manager at any time. Either in the Properties view or by right-clicking on a container in
the Design or Structure view and selecting the new layout manager from the popup menu.

Properties ~L§ li lg ‘Q‘ g’
Name Value
Name this
Class JPanel
&1 Layo anage MigLayout i
Bindings (0) BorderLayout
Events (0) BoxLayout
Client Properties (2 CardLayout
) FlowLayout
L1 Properties (4) FormLayout (JGoodies)
background GridBagLayout
border GridLayout
foreground GroupLayout (Free Design)
ik i HorizontalLayout (SwingX)

Expert Properties (
Read-only Properti
Code Generation (1

Intelli) IDEA GridLayout

null Layout
TableLayout
VerticalLayout (SwingX)

Bind

Add Event Handler
Set Layout Manager
Morph Bean...

Nest in JPanel

éé Cut
E:] Copy
ﬁ‘ Paste

Duplicate

Rename...

X Delete

-79-

s

Ctrl+X
Ctrl+C
Ctrl+V

Ctrl+D
F2
Delete

>

>

>

BorderlLayout

BoxLayout

CardLayout

FlowLayout

FormLayout (JGoodies)
GridBaglLayout

GridLayout

Grouplayout (Free Design)
HorizontalLayout (SwingX)
Intelli) IDEA GridLayout
MigLayout

null Layout

TablelLayout
VerticalLayout (SwingX)

JFormDesigner 8.2 Documentation

8.1 BorderLayout

The border layout manager places components in up to five areas: center, north, south, east and west. Each area
can contain only one component.

North PageStart PageStart
West Center East LineStart Center LineEnd LineEnd Center LineStart
South PageEnd PageEnd

(absolute positioning) (left-to-right relative positioning) (right-to-left relative positioning)

The components are laid out according to their preferred sizes. The north and south components may be
stretched horizontally. The east and west components may be stretched vertically. The center component may be
stretched horizontally and vertically to fill any space left over.

In addition to absolute positioning, BorderLayout supports relative positioning, which swaps west and east
components if the component orientation of the container is set to right-to-left. To use relative positioning, first
add a component to one of the four side areas and then change the layout constraints property of that
component to PAGE_START, PAGE_END, LINE_START or LINE_END.

BorderLayout is part of the standard Java distribution. The API documentation is available here.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description Default
horizontal gap The horizontal gap between components. 0
vertical gap The vertical gap between components. 0

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints properties:

Property Name Description

constraints Specifies where the component will be placed. Possible values: CENTER, NORTH, SOUTH, EAST,
WEST, PAGE_START, PAGE_END, LINE_START and LINE_END.

-80 -

https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/awt/BorderLayout.html

JFormDesigner 8.2 Documentation

8.2 BoxLayout

The box layout manager places components either vertically or horizontally. The components will not wrap as in
FlowLayout.

@red Ogreen Oblue

This layout manager is used rarely. Take a look at the BoxLayout APl documentation for more details about it.

BoxLayout is part of the standard Java distribution. The APl documentation is available here.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description

axis The axis to lay out components along. Possible values: X_AXIS, Y_AXIS, LINE_AXIS and PAGE_AXIS.

-89 -

https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/javax/swing/BoxLayout.html

JFormDesigner 8.2 Documentation

8.3 CardLayout

The card layout manager treats each component in the container as a card. Only one card is visible at a time. The
container acts as a stack of cards. The first component added to a card layout is the visible component when the
container is first displayed.

CardLayout is part of the standard Java distribution. The APl documentation is available here.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description Default
horizontal gap The horizontal gap at the left and right edges. 0
vertical gap The vertical gap at the top and bottom edges. 0

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints properties:

Property Name Description

Card Name Identifier that can be used to make a card visible. See API documentation for CardLayout.show
(Container, String).

-82-

https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/awt/CardLayout.html

JFormDesigner 8.2 Documentation

8.4 FlowlLayout

The flow layout manager arranges components in a row from left to right, starting a new row if no more

components fit into a row. Flow layouts are typically used to arrange buttons in a panel.

OK Cancel Help text text text

text text

FlowLayout is part of the standard Java distribution. The APl documentation is available here.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description

alignment The alignment of the layout. Possible values: LEFT, RIGHT, CENTER, LEADING and
TRAILING.

horizontal gap The horizontal gap between components and between the component and the border

of the container.

vertical gap The vertical gap between components and between the component and the border of
the container.

align on baseline Specifies whether components are vertically aligned along their baseline. Components
that do not have a baseline are centered.

-83-

Default

CENTER

false

https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/awt/FlowLayout.html

JFormDesigner 8.2 Documentation

8.5 FormLayout (JGoodies)

FormLayout is a powerful, flexible and precise general purpose layout manager. It places components in a grid of
columns and rows, allowing specified components to span multiple columns or rows. Not all columns/rows
necessarily have the same width/height.

© 1 © 3

Name:

Company:

WHE 6

Unlike other grid-based layout managers, FormLayout uses 1-based column/row indices. And it uses "real"
columns/rows as gaps. Therefore the unusual column/row numbers in the above screenshot. Using gap columns
/rows has the advantage that you can give gaps different sizes.

Use the column and row headers to insert or delete columns/rows and change column/row properties.
JFormDesigner automatically adds/removes gap columns if you add/remove a column/row.

Compared to other layout managers, FormLayout provides following outstanding features:

» Default alignment of components in a column/row.
® Specification of minimum and maximum column width or row height.

® Supports different units: Dialog units, Pixel, Point, Millimeter, Centimeter and Inch. Especially Dialog units are
very useful to create layouts that scale with the screen resolution.

Column/row templates.

® Column/row grouping.

FormLayout is open source and not part of the standard Java distribution. You must ship two additional
libraries with your application. JFormDesigner includes jgoodies-forms.jar and jgoodies-common.jar
in its redistributables. For more documentation and tutorials, visit www.jgoodies.com/freeware/libraries
/forms/.

Maven Central Repository: groupld: com.jgoodies artifactld: jgoodies-forms version: 1.8.0

APl documentation: doc.formdev.com/jgoodies-forms/
Source code: github.com/JFormDesigner/swing-jgoodies-forms

IDE plug-ins: If you use FormLayout the first time, the JFormDesigner IDE plug-in ask you whether it should
copy the required libraries (and its source code and documentation) to the IDE project and add it to the
classpath of the IDE project.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description

columnSpecs Comma separated encoded column specifications. This property is for experts only. Use the column
header instead of editing this property.

rowSpecs Comma separated encoded row specifications. This property is for experts only. Use the row header
instead of editing this property.

-84-

http://www.jgoodies.com/freeware/libraries/forms/
http://www.jgoodies.com/freeware/libraries/forms/
https://doc.formdev.com/jgoodies-forms/
https://github.com/JFormDesigner/swing-jgoodies-forms

Column/row properties

JFormDesigner 8.2 Documentation

Each column and row has its own properties. Use the column and row headers to change column/row properties.

m Column Properties X Field Description
Column The index of the column/row. Use the arrow
Column: 1 2 /Row buttons (or Alt+Left, Alt+Right, Alt+Up, Alt+Down
: keys) to edit the properties of the previous or next
Template: i default default v colUMN/row.
Specification: default . .
Template FormLayout provides several predefined templates

Default alignment

Size

O constant
[Iminimum

[Jmaximum

Resize behavior

(®none
Ogrow

Grouping
Group ID:

?

Oleft Ocenter Oright @il

@ default O preferred O minimum

Specification
representation of the options below.

for columns and rows. Here you can choose one.

The column/row specification. This is a string

Default The default alighment of the components within a
alignment column/row. Used if the value of the component
< constraint properties "h align" or "v align" are set to
03 | Dialog units DEFAULT
0-| [Dislog units Size The width of a column or height of a row. You can
02 | Dialog units use default, preferred or minimum component
size. Or a constant size. It is also possible to specify
a minimum and a maximum size. Note that the
maximum size does not limit the column/row size if
the column/row can grow (see resize behavior).
1. Resize The resize weight of the column/row.
behavior
Grouping See column/row grouping for details.

05/ (0 = no group)

Cancel Apply

Tip: The column/row context menu allows you to alter many of these options for multi-selections.

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints properties:

Property Name
grid x

gridy

grid width

grid height

h align

v align

insets

Description

Specifies the component's horizontal grid origin (column index).
Specifies the component's vertical grid origin (row index).

Specifies the component's horizontal grid extend (number of columns).
Specifies the component's vertical grid extend (number of rows).

The horizontal alignment of the component within its cell. Possible values: DEFAULT,
LEFT, CENTER, RIGHT and FILL.

The vertical alignment of the component within its cell. Possible values: DEFAULT, TOP,
CENTER, BOTTOM and FILL.

Specifies the external padding of the component, the minimum amount of space
between the component and the edges of its display area.

Note that the insets do not increase the column width or row height (in contrast to the
GridBagConstraints.insets).

Tip: The component context menu allows you to alter the alignment for multi-selections.

-85 -

Default
1
1
1
1

DEFAULT

DEFAULT

0,0,0,0

JFormDesigner 8.2 Documentation

Column/Row Templates

FormLayout provides several predefined templates for columns and rows. You can also define custom column

/row templates in the Preferences dialog.

Column templates

Name

default

preferred

minimum

related gap

unrelated gap
label component gap

glue

button

growing button

Row templates

Name

default

preferred

minimum

related gap
unrelated gap

label component gap

narrow line gap

line gap

paragraph gap

glue

Description

Determines the column width by computing the maximum of all column component preferred
widths. If there is not enough space in the container, the column can shrink to the minimum
width.

Determines the column width by computing the maximum of all column component preferred
widths.

Determines the column width by computing the maximum of all column component minimum
widths.

A logical horizontal gap between two related components. For example the OK and Cancel
buttons are considered related.

A logical horizontal gap between two unrelated components.
A logical horizontal gap between a label and an associated component.

Has an initial width of 0 pixels and grows. Useful to describe glue columns that fill the space
between other columns.

A logical horizontal column for a fixed size button.

A logical horizontal column for a growing button.

Description

Determines the row height by computing the maximum of all row component preferred
heights. If there is not enough space in the container, the row can shrink to the minimum
height.

Determines the row height by computing the maximum of all row component preferred
heights.

Determines the row height by computing the maximum of all row component minimum
heights.

A logical vertical gap between two related components.
A logical vertical gap between two unrelated components.

A logical vertical gap between a label and an associated component.
(requires JGoodies Forms 1.4 or later)

A logical vertical narrow gap between two rows. Useful if the vertical space is scarce or if an
individual vertical gap shall be smaller than the default line gap.

A logical vertical default gap between two rows. A little bit larger than the narrow line gap.

A logical vertical default gap between two paragraphs in the layout grid. This gap is larger than
the default line gap.

Has an initial height of 0 pixels and grows. Useful to describe glue rows that fill the space
between other rows.

- 86 -

Gap

no

no

no

yes

yes
yes

yes

no

no

Gap

no

no

no

yes
yes

yes

yes

yes

yes

yes

JFormDesigner 8.2 Documentation

8.6 GridBagLayout

The grid bag layout manager places components in a grid of columns and rows, allowing specified components to
span multiple columns or rows. Not all columns/rows necessarily have the same width/height. Essentially,
GridBaglayout places components in rectangles (cells) in a grid, and then uses the components' preferred sizes to
determine how big the cells should be.

“© 0 © 1

Name:

Company:

Use the column and row headers to insert or delete columns/rows and change column/row properties.

GridBagLayout is part of the standard Java distribution. The APl documentation is available here.

Extensions
JFormDesigner extends the original GridBaglLayout with following features:

* Horizontal and vertical gaps
Simply specify the gap size and JFormDesigner automatically computes the GridBagConstraints.insets
for all components. This makes designing a form with consistent gaps using GridBaglLayout much easier. No
longer wrestling with GridBagConstraints.insets.

With gaps: Without gaps:
Name: Name:
Company: Company:

* Left/top layout alignment
The pure GridBaglLayout centers the layout within the container if there is enough space. JFormDesigner
easily allows you to fix this problem by switching on two options: align left and align top.

With layout alignment: Without layout alignment:
Name:

Name:
Company:

Company:

* Default component alignment
Allows you to specify a default alignment for components within columns/rows. This is very useful for
columns with right aligned labels because you specify the alignment only once for the column and all added
labels will automatically aligned to the right.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description Default
horizontal gap The horizontal gap between components. 5
vertical gap The vertical gap between components. 5

align left If true, aligns the layout to the left side of the container. If false, then the layout is true

centered horizontally.

align top If true, aligns the layout to the top side of the container. If false, then the layout is true
centered vertically.

-87-

https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/awt/GridBagLayout.html

JFormDesigner 8.2 Documentation

These four properties are JFormDesigner extensions to the original GridBaglLayout. However, no additional library

is required.

Column/row properties

Each column and row has its own properties. Use the column and row headers to change column/row properties.

[3] column Properties X [3] Row Properties X
Column: 0 3 Row: 0 &
Default alignment Default alignment
Oleft Ocenter Oright @ fill Otop Ocenter Obottom @ fill
(Ohbaseline (O above baseline (O below baseline
Size
- = - Size
Minimum: 05 pixel
Minimum: 0% pixel
Resize behavior
Resize behavior
@®none
none
Ogrow 15 ®
Oarow 15
Field Description

Column/Row

Default alignment

Size

Resize behavior

The index of the column/row. Use the arrow buttons (or Alt+Left, Alt+Right, Alt+Up, Alt+Down
keys) to edit the properties of the previous or next column/row.

The default alignment of the components within a column/row. Used if the value of the constraints

properties "h align" or "v align" is DEFAULT.
The minimum width of a column or height of a row.

The resize weight of the column/row.

Tip: The column/row context menu allows you to alter many of these options for multi-selections.

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints properties:

Property Name
grid x

gridy

grid width

grid height

h align

v align

weight x
weighty

insets

ipad x

Description Default
Specifies the component's horizontal grid origin (column index). 0
Specifies the component's vertical grid origin (row index). 0
Specifies the component's horizontal grid extend (number of columns). 1
Specifies the component's vertical grid extend (number of rows). 1

The horizontal alignment of the component within its cell. Possible values: DEFAULT, DEFAULT
LEFT, CENTER, RIGHT and FILL.

The vertical alignment of the component within its cell. Possible values: DEFAULT, TOP, DEFAULT
CENTER, BOTTOM, FILL, BASELINE, ABOVE_BASELINE and BELOW_BASELINE.

Specifies how to distribute extra horizontal space. 0.0
Specifies how to distribute extra vertical space. 0.0
Specifies the external padding of the component, the minimum amount of space 0,0,0,0
between the component and the edges of its display area.

Specifies the internal padding of the component, how much space to add to the 0

- 88 -

JFormDesigner 8.2 Documentation

Property Name Description Default
minimum width of the component.

ipady Specifies the internal padding, that is, how much space to add to the minimum height 0
of the component.

In contrast to the GridBagConstraints API, which uses anchor and fill to specify the alignment and resize
behavior of a component, JFormDesigner uses the usual h/v align notation.

Tip: The component context menu allows you to alter the alignment for multi-selections.

-89 -

JFormDesigner 8.2 Documentation

8.7 GridLayout

The grid layout manager places components in a grid of cells. Each component takes all the available space within
its cell, and each cell is exactly the same size.

This layout manager is used rarely.

GridLayout is part of the standard Java distribution. The APl documentation is available here.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description Default
columns The number of columns. Zero means any number of columns.
rows The number of rows. Zero means any number of rows.

Note: If the number of rows is non-zero, the number of columns specified is ignored.
Instead, the number of columns is determined from the specified number of rows and
the total number of components in the layout.

horizontal gap The horizontal gap between components. 0

vertical gap The vertical gap between components. 0

-90 -

https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/awt/GridLayout.html

JFormDesigner 8.2 Documentation

8.8 GroupLayout (Free Design)

The goal of the group layout manager is to make it easy to create professional cross platform layouts. It is
designed for GUI builders, such as JFormDesigner, to use the "Free Design" paradigm. You can lay out your forms

by simply placing components where you want them. Visual guidelines suggest optimal spacing, alignment and
resizing of components.

Animation

DAnimate layout changes in Design view

I n
Animat... mfast slow
O fastfO defaulttDs

Other
[Buffer Design view in video memory

Undo history size: 1,000%

GrouplLayout has been developed by the NetBeans team and is also used by the NetBeans GUI Builder (formerly
Project Matisse). They provide a comprehensive tutorial on designing GUIs using GroupLayout, which is also
suitable for JFormDesigner: https://netbeans.apache.org/kb/docs/java/quickstart-gui.html

Grouplayout is part of the standard Java distribution since Java 6. If you need to run your application also on
Java 5 or 1.4, you can use the open-source Swing Layout Extension library, which is compatible to the Java 6
GrouplLayout, but uses different package names. Change the option "GroupLayout Generation Style" in the
Layout Managers (Java Code Generator) preferences if necessary.

Maven Central Repository: groupld: org.swinglabs artifactld: swing-layout version: 1.0.3
The APl documentation is available here.
IDE plug-ins: If you use GroupLayout from the Swing Layout Extension library the first time, the

JFormDesigner IDE plug-in ask you whether it should copy the required library (and its source code and
documentation) to the IDE project and add it to the classpath of the IDE project.

Alignment guidelines

Alignment guidelines appear only when adding or moving components. They indicate the preferred positions to
which components snap when releasing the mouse button.

Insets are the preferred spacings between components and their container.

L

-

Snap at the preferred distance from the container's left border.
Snap at the preferred distance from the container's upper border.

Offsets are the preferred spacings between adjacent components.

Name:

[

==

|Snap at the large preferred distance from a component on the left.

-99 -

https://netbeans.apache.org/kb/docs/java/quickstart-gui.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/javax/swing/GroupLayout.html

JFormDesigner 8.2 Documentation

Baseline alignment is the preferred relationship between adjacent components that display text.

Name: %

4=

‘Align on the baseline with another component.

Edge alignments (top, bottom, left and right) are possible relationships between adjacent components.

Name: %

+

‘Align with the top side of another component.‘

Name:

s

+

‘Snap at the preferred distance from the container's left border.|

Indentation alignment is a special alignment relationship in which one component is located below another and
offset slightly to the right.

Name:

L

+

Indent the component.
Snhap at the small preferred distance from a component above.

Anchoring indicators

Anchoring indicators appear when components have snapped into position. They illustrate the alignment and
relationship among components.

e -

[]
[= |

Anchors connecting components to their container or to adjacent components are represented by small semi-
circular indicators with dashed lines.

Visualization of gaps
The gaps between components are visualized as light gray rectangles. Fixed size gaps are solid and resizable gaps

are shown with springs inside. Adjacent gaps are shown when a component is selected. All gaps between all
components are shown if a container is selected.

Name: T

v
Phone: Show Gaps %
Bind >
OK Add Event Handler >
- Set Layout Manager >

)

To disable visualization of gaps, right-click on a GroupLayout container and deselect Show Gaps.

-92-

Commands

JFormDesigner 8.2 Documentation

The designer context menu provides following GrouplLayout specific commands:

Command

= = Align

|« »| Anchor

T4

b Horizontal Auto
Resizing

¥ Vertical Auto
Resizing

|| Same Width

B Same Height

Set to Default Size
Edit Layout Space

Show Gaps

Duplicate

[=] Alignin column/row

Description

Aligns the selected components left/right/top/bottom/center in column/row.

Aligns the selected components left/right/top/bottom.

Changes the anchoring of the selected components. A component is usually horizontally
anchored left/right and vertically anchored top/bottom. Anchoring connects a component to a
container edge or a neighborhood component edge.

Makes the selected components resize horizontally at runtime if the container size changes.

Makes the selected components resize vertically at runtime if the container size changes.

Makes the selected components all the same width. If one of the selected components is
already in a group of "Same Width" components, the other components are added to the
existing group. To remove components from a group, select them and then execute this
command. Grouped components are marked with a small indicator.
H =]
OK Cancel

Makes the selected components all the same height. See "Save Width" command for more
details.

Makes the selected components have its default size.

Changes the gaps around the selected component.

Shows/hides the gaps around the selected components.

Duplicates the selected components and places the new components below the original
components. Use Ctrl+Left, Ctrl+Right, Ctrl+Up or Ctrl+Down keys to place the duplicated
components left, right, above or below the original components.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name

honors visibility

Description Default

Specifies whether component visibility is considered when positioning and sizing true
components. If true, non-visible components are not treated as part of the layout. If
false, components are positioned and sized regardless of visibility.

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints properties:

Property Name

horizontal size

vertical size

horizontal resizable

vertical resizable

Description Default

Specifies the component's horizontal size in pixel or Default. If set to Default, the Default
component's preferred width is used.

Specifies the component's vertical size in pixel or Default. If set to Default, the Default
component's preferred height is used.

Specifies whether the component is horizontal resizable. false

Specifies whether the component is vertical resizable. false

-03 -

Property Name

top gap

left gap

bottom gap

right gap

top gap resizable

left gap resizable
bottom gap resizable

right gap resizable

Description

Specifies size of the top gap.

Specifies size of the left gap.

Specifies size of the bottom gap.

Specifies size of the right gap.

Specifies whether the top gap is vertical resizable.

Specifies whether the left gap is horizontal resizable.

Specifies whether the bottom gap is vertical resizable.

Specifies whether the right gap is horizontal resizable.

-94-

JFormDesigner 8.2 Documentation

Default

false
false
false

false

JFormDesigner 8.2 Documentation

8.9 HorizontalLayout (SwingX)

The horizontal layout manager places components horizontally. The components are stretched vertically to the
height of the container. The components will not wrap as in FlowLayout.

OK Cancel Help

Because the SwingX project seems to be discontinued, it is not recommended to use this layout manager.
HorizontalLayout is part of the SwingX open source project and not part of the standard Java distribution. You

must ship an additional library with your application. The JFormDesigner distribution does not include the
SwingX library.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description Default

gap The horizontal gap between components. 0

-05.-

JFormDesigner 8.2 Documentation

8.10 IntelliJ IDEA GridLayout

The Intelli) IDEA grid layout manager places components in a grid of columns and rows, allowing specified
components to span multiple columns or rows. Not all columns/rows necessarily have the same width/height.

Note: The Intelli) IDEA grid layout manager is supported to make it easier to migrate forms, which were created
with Intelli] IDEA's GUI builder. If you never used it, it is recommended to use one of the other grid-based layout
managers.

0 1
0 Name:
1 Company:

o
Use the column and row headers to insert or delete columns/rows and change column/row properties. Use
horizontal and vertical spacers, which are available in the Palette, to define space between components.

Intelli) IDEA GridLayout is open source and not part of the standard Java distribution. You must ship an
additional library with your application. JFormDesigner includes intellij_forms_rt.jar inits
redistributables. For more documentation and tutorials, visit www.jetbrains.com/idea/.

IDE plug-ins: If you use Intelli] IDEA GridLayout the first time, the JFormDesigner IDE plug-in ask you whether it
should copy the required library (and its source code) to the IDE project and add it to the classpath of the IDE
project.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description Default

horizontal gap The horizontal gap between components. If -1, then inherits gap from parent -1
container that also uses Intelli] IDEA GridLayout, or uses 10 pixels.

vertical gap The vertical gap between components. If -1, then inherits gap from parent container -1
that also uses Intellij IDEA GridLayout, or uses 5 pixels.

same size horizontally If true, all columns get the same width. false
same size vertically If true, all rows get the same height. false
margin Size of the margin between the containers border and its contents. 0,0,0,0

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints properties:

Property Name Description Default

grid x Specifies the component's horizontal grid origin (column index). 0

gridy Specifies the component's vertical grid origin (row index). 0

grid width Specifies the component's horizontal grid extend (hnumber of columns). 1

grid height Specifies the component's vertical grid extend (number of rows). 1

fill Specifies how the component fills its cell. Possible values: None, Horizontal, Vertical None
and Both.

anchor Specifies how the component is aligned within its cell. Possible values: Center, North, Center

North East, East, South East, South, South West, West and North West.

-06 -

https://www.jetbrains.com/idea/

JFormDesigner 8.2 Documentation

Property Name Description Default
indent The indent of the component within its cell. In pixel multiplied by 10. 0

align grid with parent If true, align the grid of nested containers, which use Intellij IDEA GridLayout, with the false
grid of this container.

horizontal size policy Specifies how the component affects horizontal resizing behavior. Possible values: Can Shrink
Fixed, Can Shrink, Can Grow, Want Grow and combinations. and Can
Grow
vertical size policy Specifies how the component affects vertical resizing behavior. Possible values: Fixed, ~ Can Shrink
Can Shrink, Can Grow, Want Grow and combinations. and Can
Grow
minimum size The minimum size of the component. -1, -1
preferred size The preferred size of the component. -1,-1
maximum size The maximum size of the component. -1,-1

-97-

JFormDesigner 8.2 Documentation

8.11 MigLayout

MigLayout is a superbly versatile and powerful layout manager. It is grid-based, but also supports docking and
grouping.

©| ¢ 1 © % Bl € 3 © ‘!- | ca
% Default alignment
X Oleft Ocenter Oright @fill O baseline
é Oleading Otrailing O label
% O unit value: Unitvalue (e.g. 20% or 50px)
X Size
% 1 Preferred: Unitvalue
X Minimum: Unitvalue| Maximum: UnitValue

Use the column and row headers to insert or delete columns/rows and change column/row properties.
Compared to other layout managers, MigLayout provides following outstanding features:

® Default alignment of components in a column/row.
Specification of minimum and maximum column width or row height.

* Supports different units: LogicalPixel, Pixel, Point, Millimeter, Centimeter, Inch, Percent and ScreenPercent.
Especially LogicalPixel units are very useful to create layouts that scale with the screen resolution.

® Gaps between columns, rows and components.

® Flexible Growing and Shrinking.

Column/row grouping.

® In-cell Flow allows putting more than one component into a single grid cell.
® Docking Components to the edges of the container.

® Button Bars and Button Order.

® Override minimum, preferred and maximum component sizes.

® Visual Bounds improves/fixes layout (especially on macOS).

® Baseline support.

MigLayout is open source and not part of the standard Java distribution. You must ship two additional
libraries with your application. JFormDesigner includes miglayout-swing.jar and miglayout-core.jar
in its redistributables. For more documentation and tutorials, visit miglayout.com or github.com/mikaelgrev
/miglayout.

Maven Central Repository: groupld: com.miglayout artifactld: miglayout-swing version: 11.2

The APl documentation is available here: doc.formdev.com/miglayout-swing/ and doc.formdev.com/miglayout-
core/.

IDE plug-ins: If you use MigLayout the first time, the JFormDesigner IDE plug-in ask you whether it should

copy the required libraries (and its source code and documentation) to the IDE project and add it to the
classpath of the IDE project.

- 08 -

https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#different-units
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#gaps
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#growing-and-shrinking
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#in-cell-flow
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#docking-components
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#button-bars-and-button-order
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#component-sizes
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#visual-bounds
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#baseline-support
http://miglayout.com/
https://github.com/mikaelgrev/miglayout
https://github.com/mikaelgrev/miglayout
https://doc.formdev.com/miglayout-swing/
https://doc.formdev.com/miglayout-core/
https://doc.formdev.com/miglayout-core/

JFormDesigner 8.2 Documentation

Insets

By default, all MigLayout containers have insets around the grid. This is similar to setting an EmptyBorder on the
container. You can change the insets in the Layout manager properties.

Default insets (panel): Zero insets: [Layout Manager (... MigLayout
© 0 © 1 b © 0 © 1 b Layout Constraints hidemode 3
z . 2 Name: tlbr M
o | Name: _ Gaps dialog
R B
- Tompany:
2 Company: 1 pany h align Default panel

v align Default

Fill =83

If you prefer zero insets by default, you can change the default layout constraints in the MigLayout preferences.

In-cell Flow

MiglLayout allows you to place more than one component into a single grid cell. This is very useful for radio button
groups and avoids nested containers.

<0 = 0 S 0
% Ore% ﬁ Ored Ogree% ﬁ Ored Ogreen Oblue
; + ; o :
column 0, row 0 column 0, row 0
Same cell as: Same cell as:
- redButton - redButton
- greenButton

Docking Components

MigLayout supports docking components to its edges (similar to BorderLayout). You can dock more than one
component to one edge. The center is laid out with a grid.

< 0) 1 & 0 £ 1
North " North
% Name: 2 West Name:
~ \West East East
? €St Company: ? Company:
South South
Order: north, west, south, east Order: east, south, west, north

The docked components are laid out based on the component order. Earlier components get more space as you
can see in the above screenshots. Use drag and drop in the Structure view to change order of docked components.

To dock a component, first place it somewhere in the grid, then right-click on the component and select one of the
Dock items from the context menu.

&0 &1

[

EE Halign: Default € »€ > © € > €a
Valign: Defaut ©* X + & 2

Dock: T 4 |« o
Teg >

Nb e

N R ol

-99.-

JFormDesigner 8.2 Documentation

Visual Bounds

Some component bounds are larger than their visual bounds (especially on macOS), which gives too large gaps on
macOS but optimal gaps on other platforms. MigLayout solves this by considering visual padding when computing
component sizes.

Visual Padding on: Visual Padding off:

e 0 | [e 0
| preferred ?) O preferred
T minimum T L
— 1 minimum
kd grow %
B pixel 2] grow
B percentage H pixel
E3
4 percentage

Layout manager properties

A container with this layout manager has following layout manager properties:

Visual Padding

Column Constraints

Row Constraints

If true, padding of visual bounds is considered when computing
component sizes.

Constraints of all columns of the container. This property is for
experts only. Use the column header instead of editing this

property.

Constraints of all rows of the container. This property is for experts
only. Use the row header instead of editing this property.

- 100 -

Property Name Description White Paper Default
Layout Constraints Comma separated list of layout constraints. This is a string Layout
representation of the options below. Constraints
Insets Specifies the insets for the container. Use this instead of an insets panel
EmptyBorder.
Gaps Specifies the default gaps between the columns/rows. gap related
h align The horizontal alignment of the layout within its container. Possible alignx Default
values: Default, Left, Center, Right, Leading and Trailing.
v align The vertical alignment of the layout within its container. Possible aligny Default
values: Default, Top, Center and Bottom.
Fill Specifies whether columns and/or rows should claim all available fill (none)
space in the container. Possible values: (none), X, Y and Both.
Hide Mode Specifies how the layout manager handles invisible components. hidemode 0
Flow Y If true, multiple components in a single cell are lay out vertically. flowy false
right-to-left If true, the columns are added from right-to-left. righttoleft false
bottom-to-top If true, the rows are added from bottom-to-top. bottomtotop false

novisualpadding true

Column
Constraints

Row Constraints

https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout-constraints
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout-constraints
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout_cons_insets
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout_cons_gap
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout_cons_align
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout_cons_align
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout_cons_fill
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout_cons_hidemode
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout_cons_flowy
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout_cons_lefttoright
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout_cons_toptobottom
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#visual-bounds
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#layout_cons_novisualpadding
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#columnrow-constraints
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#columnrow-constraints
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#columnrow-constraints

Column/row properties

JFormDesigner 8.2 Documentation

Each column and row has its own properties. Use the column and row headers to change column/row properties.

[3] Column Properties X

Column: 0 L)

Constraints

Column: fill

Gap before: Boundsize 5| Gap after: | BoundSize',

Default alignment
Oleft Ocenter Oright @ Fill
Oleading Otrailing O label

O unit value: UnitValue| (e.g. 20% or 50px)
Size

Preferred: UnitValue

Minimum: Unitvalue Maximum: UnitValue
Resize behavior

[CJarow 0| Priority: 1005

[shrink 10075 Priority: 1005
Grouping

Group ID: (empty = no grouping)

Cancel Apply

?

Field

Column
/Row

Constraints

Gap before
/after

Default
alignment

Size

Resize
behavior

Grouping

Description

The index of the column/row. Use the
arrow buttons (or Alt+Left, Alt+Right,
Alt+Up, Alt+Down keys) to edit the
properties of the previous or next column
/row.

The column/row constraints. This is a

string representation of the options below.

The gaps before and after the column/row.

The default alignment of the components
within a column/row. Used if the value of
the component constraint properties "h
align" or "v align" are set to Default.

The width of a column or height of a row.
You can specify preferred, minimum and a
maximum sizes.

The grow/shrink weight and priority of the
column/row.

See column/row grouping for details.

Tip: The column/row context menu allows you to alter many of these options for multi-selections.

Layout constraints properties

White
Paper

Column
/Row
Constraints

BoundSize

align, fill

UnitValue,
BoundSize

grow,
growprio,
shrink,
shrinkprio

sizegroup

A component contained in a container with this layout manager has following layout constraints properties:

Property Name Description

Layout Constraints

Comma separated component constraints.

White
Paper

Component
Constraints

Grid Bounds The computed grid cell bounds (read-only).
Cell The component's grid cell origin (column and row indices). cell
Span The component's grid cell extend (number of columns and rows). span
h align The horizontal alignment of the component within its cell. Possible alignx
values: Default, Left, Center, Right, Fill, Leading, Trailing and Label.
v align The vertical alignment of the component within its cell. Possible values: aligny
Default, Top, Center, Bottom, Fill and Baseline.
Width Overrides the component's minimum, preferred and maximum widths. width, wmin
, wmax
Height Overrides the component's minimum, preferred and maximum heights. height,
hmin, hmax
Gaps The gaps between the component and the cell edges. Increases cell size. gap
Padding The padding between the component and the cell edges. Does not pad

increase cell size.

-101 -

Default

0,0
11

Default

Default

0,0,0,0

0,0,0,0

https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#columnrow-constraints
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#columnrow-constraints
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#columnrow-constraints
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#boundsize
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#colrow_cons_align
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#colrow_cons_fill
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#unitvalue
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#boundsize
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#colrow_cons_grow
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#colrow_cons_growprio
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#colrow_cons_shrink
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#colrow_cons_shrinkprio
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#colrow_cons_sizegroup
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#component-constraints
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#component-constraints
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_cell
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_span
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_align
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_align
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_size
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_min_max_size
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_min_max_size
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_size
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_min_max_size
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_min_max_size
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_gap
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_pad

JFormDesigner 8.2 Documentation

Property Name Description White Default
Paper
Dock Dock the component at an edge or the center of the container. Possible dock (none)
values: (none), North, South, West, East and Center.
Tag Tag used for platform dependent button ordering. Possible values: tag (none)
(none), ok, cancel, help, help2, yes, no, apply, next, back, finish, left, right
and other.

Tip: The component context menu allows you to alter some constraints for multi-selections.

-102 -

https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_dock
https://www.formdev.com/jformdesigner/doc/layouts/miglayout-whitepaper/#comp_cons_tag

JFormDesigner 8.2 Documentation

8.12 null Layout

null layout is not a real layout manager. It means that no layout manager is assigned and the components can be
put at specific x,y coordinates.

Name:
[Jtext

text

[Jtext

It is useful for making quick prototypes. But it is not recommended for production because it is not portable. The
fixed locations and sizes do not change with the environment (e.g. different fonts on various platforms).
Preferred sizes

JFormDesigner supports preferred sizes of child components. This solves one common problem of null layout: the

component sizes change with the environment (e.g. different fonts on various platforms). Unlike other GUI
designers, no additional library is required.

Grid

To make it easier to align components, the component edges snap to an invisible grid when moving or resizing
components. You can specify the grid step size in the Preferences dialog. To temporary disable grid snapping, hold
down the Shift key while moving or resizing components.

Keyboard

You can move selected components with Ctrl+ArrowKey and change size with Shift+ArrowKey .

Aligning components

The align commands help you to align a set of components or make them same width or height.

e

€
= Align Left Alt+Left

3

5= Align Center Alt+Home
E =| Align Right Alt+Right

T Align Top Alt+Up

4t Align Middle Alt+End

il Align Bottom Alt+Down

= Same Width Ctrl+Alt+Right

Tl same Height Ctrl+Alt+Down

[+l £

Make Horizontal Space Equal Ctrl+Alt+Left
Make Vertical Space Equal ~ Ctrl+Alt+Up

The dark blue handles in the above screenshot indicate the first selected component.

Command Description

[== Align Left Line up the left edges of the selected components with the left edge of the first selected component.

3= Align Center Horizontally line up the centers of the selected components with the center of the first selected
component.

=| Align Right Line up the right edges of the selected components with the right edge of the first selected
component.

-103 -

JFormDesigner 8.2 Documentation

Command Description

T[T Align Top Line up the top edges of the selected components with the top edge of the first selected component.

4 Align Middle Vertically line up the centers of the selected components with the center of the first selected
component.

Al Align Bottom Line up the bottom edges of the selected components with the bottom edge of the first selected
component.

=, Same Width Make the selected components all the same width as the first selected component.

Il Same Height Make the selected components all the same height as the first selected component.

|«+| Make Horizontal Makes the horizontal space between 3 or more selected components equal. The leftmost and

Space Equal rightmost components stay unchanged. The other components are horizontally distributed

between the leftmost and rightmost components.

Make Vertical Makes the vertical space between 3 or more selected components equal. The topmost and
Space Equal bottommost components stay unchanged. The other components are vertically distributed between
the topmost and bottommost components.

|

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description Default

auto-size If true, computes the size of the container so that all children are entire visible. If false, true
the size of the container in the Design view is used.

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints properties:

Property Name Description Default
X The x coordinate of the component relative to the left corner of the container. 0

y The y coordinate of the component relative to the upper corner of the container. 0

width The width of the component in pixel or Preferred. If set to Preferred, the component's Preferred

preferred width is used.

height The height of the component in pixel or Preferred. If set to Preferred, the component's Preferred
preferred width is used.

-104 -

JFormDesigner 8.2 Documentation

8.13 TableLayout

The table layout manager places components in a grid of columns and rows, allowing specified components to
span multiple columns or rows. Not all columns/rows necessarily have the same width/height.

A column/row can be given an absolute size in pixels, a percentage of the available space, or it can grow and
shrink to fill the remaining space after other columns/rows have been resized.

“© 0 © 1

% Name:
? Company:

Use the column and row headers to insert or delete columns/rows and change column/row properties.

TableLayout is open source and not part of the standard Java distribution. You must ship an additional library
with your application. JFormDesigner includes TablelLayout.jar inits redistributables. For more
documentation and tutorials, visit www.clearthought.info/sun/products/jfc/tsc/articles/tablelayout/.

Maven Central Repository: groupld: tablelayout artifactld: TablelLayout version: 20050920

APl documentation: doc.formdev.com/tablelayout/
Source code: github.com/JFormDesigner/swing-tablelayout

IDE plug-ins: If you use TableLayout the first time, the JFormDesigner IDE plug-in ask you whether it should

copy the required library (and its source code and documentation) to the IDE project and add it to the
classpath of the IDE project.

Extensions

JFormDesigner extends the original TableLayout with following features:

* Default component alignment
Allows you to specify a default alignment for components within columns/rows. This is very useful for

columns with right aligned labels because you specify the alignment only once for the column and all added
labels will automatically aligned to the right.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description Default
horizontal gap The horizontal gap between components. 5
vertical gap The vertical gap between components. 5

-105-

http://www.clearthought.info/sun/products/jfc/tsc/articles/tablelayout/
https://doc.formdev.com/tablelayout/
https://github.com/JFormDesigner/swing-tablelayout

JFormDesigner 8.2 Documentation

Column/row properties

Each column and row has its own properties. Use the column and row headers to change column/row properties.

[3] Column Properties X Field Description
Column The index of the column/row. Use the arrow buttons (or
Column: 0 2 /Row Alt+Left, Alt+Right, Alt+Up, Alt+Down keys) to edit the

properties of the previous or next column/row.

Default ali t . I
Sl bs Default The default alignment of the components within a column

Oleft Ocenter Oright @fill alignment /row. Used if the value of the constraints properties "h
align" or "v align" is DEFAULT.

Size

e Size Specifies how TableLayout computes the width/height of
@preferred a column/row.
O minimum
OQI’DW
O pixel 0> pixel
(O percentage 07 %

Tip: The column/row context menu allows you to alter many of these options for multi-selections.

Layout constraints properties

A component contained in a container with this layout manager has following layout constraints properties:

Property Name Description Default
grid x Specifies the component's horizontal grid origin (column index). 0

gridy Specifies the component's vertical grid origin (row index). 0

grid width Specifies the component's horizontal grid extend (hnumber of columns). 1

grid height Specifies the component's vertical grid extend (number of rows). 1

h align The horizontal alignment of the component within its cell. Possible values: DEFAULT, DEFAULT

LEFT, CENTER, RIGHT and FILL.

v align The vertical alignment of the component within its cell. Possible values: DEFAULT, TOP, DEFAULT
CENTER, BOTTOM and FILL.

In contrast to the TableLayoutConstraints API, which uses [column1,row1,column2,row?2] to specify the location
and size of a component, JFormDesigner uses the usual [x,y,width,height] notation.

Tip: The component context menu allows you to alter the alignment for multi-selections.

- 106 -

JFormDesigner 8.2 Documentation

8.14 VerticalLayout (SwingX)

The vertical layout manager places components vertically. The components are stretched horizontally to the width
of the container.

oK
Cancel

Help

Because the SwingX project seems to be discontinued, it is not recommended to use this layout manager.

VerticalLayout is part of the SwingX open source project and not part of the standard Java distribution. You
must ship an additional library with your application. The JFormDesigner distribution does not include the
SwingX library.

Layout manager properties

A container with this layout manager has following layout manager properties:

Property Name Description Default

gap The vertical gap between components. 0

-107 -

JFormDesigner 8.2 Documentation

o Java Code Generator

JFormDesigner can generate and update Java source code. It uses the same name for the Java file as for the Form
file. E.g.:

C:\MyProject\src\com\myproject\WelcomeDialog.jfd (form file)
C:\MyProject\src\com\myproject\WelcomeDialog.java (java file)

Stand-alone: Before creating new forms, you should specify the locations of your Java source folders in the Project
dialog. Then JFormDesigner can generate valid package statements. For the above example, you should add C:
\MyProject\src.

IDE plug-ins: The source folders of the IDE projects are used.

If the Java file does not exist, JFormDesigner generates a new one. Otherwise, it parses the existing Java file and
inserts/updates the code for the form and adds import statements if necessary.

Stand-alone: The Java file will be updated when saving the form file.

IDE plug-ins: If the Java file is opened in the IDE editor, it will be immediately updated in-memory on each change
in JFormDesigner. Otherwise, it will be updated when saving the form file.

JFormDesigner uses special comments to identify the code sections that it will generate/update. E.g.:

// JFormDesigner - ... //GEN-BEGIN:initComponents
// JFormDesigner - ... //GEN-END:initComponents

The starting comment must contain GEN-BEGIN:<keyword>, the ending comment GEN-END: <keyword> . These
comments are NetBeans compatible. The text before GEN-BEGIN and GEN-END (in the same line) does not
matter. JFormDesigner uses the following keywords:

Keyword name Description

initComponents Used for code that instantiates and initializes the components of the form.
variables Used for code that declares the class level variables for components.

initl18n Used for code that initializes localized component properties if option "Generate

initComponentsl18n() method" is enabled in the Localization (Java Code Generator) preferences or
"(form)" properties.

initBindings Used for code that initializes bindings if option "Generate initComponentBindings() method" is
enabled in the Localization (Java Code Generator) preferences or "(form)" properties.

-108 -

JFormDesigner 8.2 Documentation

0.1 Nested Classes

One of the advanced features of JFormDesigner is the generation of nested classes. Normally, all code for a form is
generated into one class. If you have forms with many components, e.g. a JTabbedPane with some tabs, it is not
recommended having only one class. If you hand-code such a form, you would create a class for each tab.

In JFormDesigner you can specify a nested class for each component. You do this in the Code Generation category
in the Properties view. JFormDesigner automatically generates/updates the specified nested classes. This allows
you to program more object-oriented and makes your code easier to read and maintain.

| Structure Z =/ | Properties J=|ls |2 ‘Q‘ D7
5l (form) Name Value
(=+[& this [BorderLayout] [-] Code Generation (13, 1 set)

Nested Class Name Tab2Panel
Variable Name tab2Panel
Variable Modifiers private
Use Local Variable [_|false
Gen. Getter Method [|false
Variable Annotatio...
Type Parameters (...

=+ tabbedPane [JTabbedPane]
= tablPaneI [MigLayout]
[ab] labell ("text")
[Dtaaﬁeml
= L_c'tab2Pane| [MigLayout]
- [55] label2 ("text")
[T]] textField2

Components having a nested class are marked with a © overlay symbol in the Structure view.

Example source code:

public class NestedClassDemo
extends JPanel

public NestedClassDemo() {
initComponents();
3

private void initComponents() {
// JFormDesigner - Component initialization - DO NOT MODIFY //GEN-BEGIN:initComponents
tabbedPane = new JTabbedPane();

tablPanel = new TablPanel();
tab2Panel = new Tab2Panel();
[fe======= Hlg c=======
setLayout(new BorderlLayout());
//:::::::: tabbedPane ========
{

tabbedPane.addTab("tab 1", tablPanel);
tabbedPane.addTab("tab 2", tab2Panel);

}

add (tabbedPane, BorderLayout.CENTER);

// JFormDesigner - End of component initialization //GEN-END:initComponents
}

// JFormDesigner - Variables declaration - DO NOT MODIFY //GEN-BEGIN:variables
private JTabbedPane tabbedPane;

private TablPanel tablPanel;

private Tab2Panel tab2Panel;

// JFormDesigner - End of variables declaration //GEN-END:variables

//-——— nested class TablPanel ———-—————————————————————————————————— -

private class TablPanel
extends JPanel
{

private TablPanel() {
initComponents();
}

private void initComponents() {
// JFormDesigner - Component initialization - DO NOT MODIFY //GEN-BEGIN:initComponents
label2 = new JLabel();
textFieldl = new JTextField();
CellConstraints cc = new CellConstraints();

[je======= jlg s=======
setBorder (Borders.TABBED_DIALOG) ;
setlLayout(new FormLayout(...));

-109 -

JFormDesigner 8.2 Documentation

//---- label2 ----
label2.setText ("text");
add(label2, cc.xy(l, 1));

//--—-- textFieldl ----

add (textFieldl, cc.xy(3, 1));

// JFormDesigner - End of component initialization //GEN-END:initComponents
}

// JFormDesigner - Variables declaration - DO NOT MODIFY //GEN-BEGIN:variables
private JLabel label2;
private JTextField textFieldl;
// JFormDesigner - End of variables declaration //GEN-END:variables
}

J)==== 1EStEe ClESS VEL2PENIRIl =—=——————===s=cssosscscocccsccss=sossssssosesssossssssms

private class Tab2Panel
extends JPanel
{

private Tab2Panel() {
initComponents();
}

private void initComponents() {
// JFormDesigner - Component initialization - DO NOT MODIFY //GEN-BEGIN:initComponents
label3 = new JLabel();
checkBox1l = new JCheckBox();
CellConstraints cc = new CellConstraints();

//======== this ========
setBorder (Borders.TABBED_DIALOG);
setlLayout(new FormLayout(...));

//---- label3 ----
label3.setText ("text");
add(label3, cc.xy(l, 1));

//--—-—- checkBoxl ----

checkBox1l.setText("text");

add (checkBox1l, cc.xy(3, 1));

// JFormDesigner - End of component initialization //GEN-END:initComponents

}

// JFormDesigner - Variables declaration - DO NOT MODIFY //GEN-BEGIN:variables
private JLabel label3;

private JCheckBox checkBox1;

// JFormDesigner - End of variables declaration //GEN-END:variables

When changing the nested class name in the Code Generation category, JFormDesigner also renames the nested
class in the Java source code. When removing the nested class name, then JFormDesigner does not remove the
nested class in the Java source code to avoid loss of own source code.

-110-

JFormDesigner 8.2 Documentation

9.2 Code Templates

When generating new Java files or classes, JFormDesigner uses the templates specified in the Preferences dialog.

Template name
File header

Class

Empty Class

Event Handler Body
Component

Initialization

Component 118n
Initialization

Component Binding
Initialization
Variables Declaration

java.awt.Dialog

java.awt.Frame

java.awt.Window

javax.swing.
AbstractAction

Description
Used when creating new Java files. Contains a header comment and a package statement.

Used when generating a new (nested) class. Contains a class declaration, a constructor, a component
initialization method and variable declarations.

Used when generating a new empty class. This can happen, if all form components are contained in
nested classes.

Used for event handler method bodies.

Replaces the variable ${component_initialization} used in other templates. Contains a
method named initComponents. Invoke this method from your code to instantiate the
components of your form. Feel free to change the method name if you don't like it.

Used for code that initializes localized component properties if option "Generate
initComponentsl18n() method" is enabled in the Localization (Java Code Generator) preferences or
"(form)" properties.

Used for code that initializes bindings if option "Generate initComponentBindings() method" is
enabled in the Localization (Java Code Generator) preferences or "(form)" properties.

Replaces the variable ${variables_declaration} used in other templates.

Used for classes derived from java.awt.Dialog.Compared to the "Class" template, this has
special constructors, which are necessary for java.awt.Dialog derived classes.

Used for classes derived from java.awt.Frame. Equal to the "Class" template, but necessary
because java.awt.Frame extends java.awt.Window, which has its own template and a
constructor that is not compatible with java.awt.Frame.

Used for classes derived from java.awt.Window.Compared to the "Class" template, this has a
special constructor, which are necessary for java.awt.Window derived classes.

Used for nested action classes.

You can change the existing templates or create additional templates in the Preferences dialog. It is possible to
define your own templates for specific superclasses.

Following variables can be used in the templates:

Variable name Description Context
${date} Current date. global
${user} User name. global
${package_declaration} package statement. If the form is not saved under one of the source folders file header
specified in the Project dialog, the variable is empty (no package statement will be
generated).
${class_name} Name of the (nested) class. class
${component_initialization} See template "Component initialization". class
${constructor_modifiers} Modifiers of the constructor. Based on the class modifiers. class
${extends_declaration} The extends declaration of the class; empty if the class has no superclass. class
${modifiers} Modifiers of the (nested) class. You can specify the default modifiers in the class
Preferences dialog.
${variables_declaration} See template "Variables declaration". class

-111 -

JFormDesigner 8.2 Documentation

10 Command Line Tool

The command-line tool allows you to run some commands (e.g. Java code generation) on many forms.

Available commands

* Java Code Generation: Usually its not necessary to run the Java code generator from command-line because
the Java code is automatically generated and updated while editing a form in JFormDesigner. However, in
rare cases it is useful to re-generate the Java code of JFormDesigner forms. E.g. if you want upgrade to
JGoodies FormLayout 1.2 (or later), which introduced a new much shorter syntax for encoded column and
row specifications.

Externalize strings: If you have to localize many existing non-localized forms, then this command does the
job very quickly.

Convert layout manager: Allows you to convert all usages of one layout manager to another one. Useful for
migrating forms to a modern powerful layout manager (e.g. MigLayout).

Convert .jfd file format: Since version 5.1, JFormDesigner supports the compact, easy-to-merge and fast-to-
load persistence format JFDML. This command allows you to convert all your .jfd files from XML to JFDML and
benefit from the new format.

Requirements

You need an installation of the JFormDesigner stand-alone edition. If you usually use one of the IDE plug-ins,
then simply download the stand-alone edition and install it.

Preferences

To specify preferences for the command-line tool, you should create a stand-alone edition project, enable and set
project specific settings and pass the project .jfdproj file to the command-line tool.

If you usually use the JFormDesigner stand-alone edition and already have a .jfdproj file, then you can use it for the
command-line tool. Otherwise, start the JFormDesigner stand-alone edition and create a new project.

If you don't use a project, then the command-line tool uses the preferences store of the stand-alone edition. If you
use one of the IDE plug-ins of JFormDesigner, you have to start the stand-alone edition and set the necessary
preferences. To transfer JFormDesigner preferences from an IDE to the stand-alone edition, you can use the
Import and Export buttons in the Preferences dialogs. Make sure that the Code Style preferences are correct
because they are not transferred from the IDE.

Command Line Syntax

Launch the command-line tool as follows, where [] means optional arguments and arguments in italics must be
provided by you.

java -classpath <jfd-install>/lib/JFormDesigner.jar
com.jformdesigner.application.CommandLineMain
[--generate|--il8n-externalize|--convert-layout|--convert-jfd]
[--dry-run] [--verbose|-v] [--recursive|-r]
[<command-specific-options>]
[<project-path>/MyProject.jfdproj]
<folder> or <path>/MyForml.jfd

Loool
Option Description
-classpath <jfd-install>/lib Specifies the JAR that contains the command-line tool. This is a standard argument
/JFormDesigner.jar of the Java application launcher.
com.jformdesigner.application. The class name of the command-line tool.

CommandLineMain

-112-

https://docs.oracle.com/en/java/javase/12/tools/java.html

Option
--generate

--i18n-externalize

--convert-layout
--convert-jfd

--dry-run

--verbose or -v
--recursive or -r

--bundle-name=<bundleName>

--key-prefix=<keyPrefix>

--auto-externalize=<true | false>

--old-layout=</ayoutClassName>

--new-layout=</ayoutClassName>

--lookandfeel=</ookAndFeelClassName>

--format=</FDML | XML>

--encoding=<encoding>

--header-comment=<headerComment>

<project-path>/MyProject.jfdproj

<folder> or <path>/MyForm1.jfd [...]

JFormDesigner 8.2 Documentation

Description
Generate Java code for the given forms or folders.

Externalize strings in the given forms or folders. This requires that you've specified
Source Folders in the used project.

Convert one layout manager to another one.
Convert the given .jfd files to another format.

Execute the given command, but do not save modifications. Only shows what would
happen. This option enables --verbose.

Prints file names of processed .jfd and .java files to the console.
Recursively process folders.

Only used for --i18n-externalize.

The resource bundle name used to store strings. You can use variables {package}
(package name of form) and {basename} (basename of form). Default is "{package}.
Bundle", which creates Bundle.properties in same package as the form. This option
is ignored when processing already localized forms.

Only used for --i18n-externalize.

The prefix for generated key. You can use variable {basename} (basename of form).
Default is "{basename}". This option is ignored when processing already localized
forms.

Only used for --i18n-externalize.
Set the auto-externalize option in the processed forms. Default is true.

Only used for --convert-layout.
The full qualified class name of the layout manager that will be converted to another
layout manager.

Only used for --convert-layout.
The full qualified class name of the target layout manager.

Only used for --convert-layout.

The full qualified class name of a look and feel that will be used for layout manager
conversion. This is useful if the old layout manager uses units that depend on the
look and feel (e.g. FormLayout dialog units). Default is the system look and feel.

Only used for --convert-jfd.
The target format into which the .jfd files will be converted. Default is "JFDML".

Only used for --convert-jfd.
The encoding used to store JFDML content. See java.nio.charset.Charset for
supported encodings. Defaults is "UTF-8".

Only used for --convert-jfd.
A comment that is stored in the header of the converted .jfd files. May contain "\n",
which is converted to real newline character.

Optional JFormDesigner stand-alone edition project used to extend the classpath
and to specify other preferences. Useful when using custom components.

List of folders or .jfd files. If a folder is specified, all .jfd files in the folder are
processed.

The options and parameters are processed in the order they are passed. An option is always used for subsequent
parameters, but not for preceding ones. E.g. "srcl --recursive src2" processes src2 recursively, but not
srcl. Itis also possible to specify options or projects more than once. E.g. "projectl.jfdproj srcl
project2.jfdproj src2"uses projectl.jfdproj for srcl and project2.jfdproj for src2.

-113-

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/nio/charset/Charset.html

JFormDesigner 8.2 Documentation

Using custom components

If you're using custom components (JavaBeans) in your forms, it is necessary to tell the command-line tool the
classpath of your components, because e.g the code generator needs to load the classes of custom components.
There are two options to specify the classpath for your custom components:

® JFormDesigner stand-alone edition project: The JARs and folders specified on the Classpath page in the
project settings are used by the command-line tool. This is the preferred way is you use the stand-alone
edition.

® (Classpath of Java application launcher: Simply add your JARs to the -classpath option of the Java application
launcher. This is the preferred way if you use Ant (see below).

Examples

Generate code for a single form:

cd C:\MyProject

java -classpath C:\ProgramFiles\JFormDesigner\1lib\JFormDesigner.jar
com.jformdesigner.application.CommandLineMain
--generate src/com/myproject/MyForml.jfd

Generate code for all forms in a project that use custom components:

cd C:\MyProject

java -classpath C:\ProgramFiles\JFormDesigner\1lib\JFormDesigner.jar;classes;swingx.jar
com.jformdesigner.application.CommandLineMain
--generate --recursive src

Externalize strings in all forms of the src folder and use one bundle file per form and no key prefix:

cd C:\MyProject

java -classpath C:\ProgramFiles\JFormDesigner\1lib\JFormDesigner.jar
com.jformdesigner.application.CommandLineMain
--il8n-externalize --recursive
--bundle-name={package}.{basename} --key-prefix=
MyProject.jfdproj src

Convert all usages for FormLayout to MigLayout in all forms of the src folder:

cd C:\MyProject

java -classpath C:\ProgramFiles\JFormDesigner\lib\JFormDesigner.jar
com.jformdesigner.application.CommandLineMain
--convert-layout
--old-layout=com.jgoodies.forms.layout.FormLayout
--new-layout=net.miginfocom.swing.MiglLayout
--lookandfeel=com.sun.java.swing.plaf.windows.WindowsLookAndFeel
--recursive
MyProject.jfdproj src

-114-

https://docs.oracle.com/en/java/javase/12/tools/java.html

JFormDesigner 8.2 Documentation

Ant

Although we don't provide a special task for Ant, it is easy to invoke the JFormDesigner command-line tool from an
Ant script. The <classpath> element makes it easy to specify JARs and folders of custom components.

<property name="jfd-install-dir" value="C:/Program Files/JFormDesigner"/>

<java classname="com.jformdesigner.application.CommandLineMain"
fork="true" failonerror="true'" logError="true'">
<classpath>
<pathelement location="${jfd-install-dir}/lib/JFormDesigner.jar"/>
<pathelement location="myLibrary.jar"/>

</classpath>
<arg value="--generate'"/>
<arg value="--recursive"/>
<arg value='"src"/>

</java>

-115-

https://ant.apache.org/

JFormDesigner 8.2 Documentation

11 Runtime Library

Note: If you use the Java code generator, you don't need this library.

The open-source (BSD license) runtime library allows you to load JFormDesigner .jfd files at runtime within your
applications. Turn off the Java code generation in the Preferences dialog or in the Project settings if you use this
library.

You'll find the library jfd-loader.jar inthe redistributables of the JFormDesigner installation; the source
codeisin jfd-loader-src.zip and the documentation isin jfd-loader-javadoc.zip.

The APl documentation is also available here: doc.formdev.com/jfd-loader/.

Classes

® FormLoader provides methods to load JFormDesigner .jfd files into in-memory form models.

® FormCreator creates instances of Swing components from in-memory form models and provides methods
to access components.

® FormSaver saves in-memory form models to JFormDesigner .jfd files. Can be used to convert proprietary
form specifications to JFormDesigner .jfd files: first create an in-memory form model from your form
specification, then save the model to a .jfd file.

Example

The following example demonstrates the usage of FormLoader and FormCreator. It is included in the examples
distributed with all JFormDesigner editions.

public class LoaderExample

{
private JDialog dialog;

public static void main(String[] args) {
new LoaderExample();
}

LoaderExample() {
try {
// load the .jfd file into memory
FormModel formModel = FormLoader.load(
"com/jformdesigner/examples/LoaderExample.jfd");

// create a dialog

FormCreator formCreator = new FormCreator (formModel);
formCreator.setTarget(this);

dialog = formCreator.createDialog(null);

// get references to components
JTextField nameField = formCreator.getTextField("nameField");
JCheckBox checkBox = formCreator.getCheckBox("checkBox");

// set values
nameField.setText("enter name here");
checkBox.setSelected(true);

// show dialog
dialog.setModal(true);
dialog.pack();
dialog.show();

System.out.println(nameField.getText());
System.out.println(checkBox.isSelected());
System.exit(0);

} catch(Exception ex) {
ex.printStackTrace();

}

-116 -

https://doc.formdev.com/jfd-loader/

JFormDesigner 8.2 Documentation

// event handler for checkBox

private void checkBoxActionPerformed(ActionEvent e) {
JOptionPane.showMessageDialog(dialog, '"check box clicked");

}

// event handler for okButton

private void okButtonActionPerformed() {
dialog.dispose();

}

-117 -

JFormDesigner 8.2 Documentation

12 JavaBeans

What is a Java Bean?
AJava Bean is a reusable software component that can be manipulated visually in a builder tool.

JavaBean (components) are self-contained, reusable software units that can be visually composed into composite
components and applications. A bean is a Java class that:

® is public and not abstract
® has a public "null" constructor (without parameters)

® has properties defined by public getter and setter methods.
JFormDesigner supports:

® Visual beans (must inherit from java.awt.Component).

* Non-visual beans.

Beaninfo
JFormDesigner supports/uses following classes/interfaces specified in the java.beans package:

* BeanlInfo

® BeanDescriptor

* EventSetDescriptor

® PropertyDescriptor

* PropertyEditor (incl. support for custom and paintable editors)

@ Customizer

If you are writing BeanInfo classes for your custom components, you can specify additional information needed by
JFormDesigner using the java.beans.FeatureDescriptor extension mechanism.

You can also use BeanInfo Annotations to specify these attributes without the pain of implementing BeanInfo
classes.

For examples using BeanInfo Annotations, example implementations of BeanInfo classes and PropertyEditors,
take a look at the examples.

BeanDescriptor Attributes

Following attributes are supported in BeanDescriptor:

Attribute Name Description

isContainer Specifies whether a component is a container or not. A container can have child components. The value
must be a Boolean. Default is false. E.g.

beanDesc.setValue("isContainer", Boolean.TRUE);
containerDelegate If components should be added to a descendant of a container, then it is possible to specify a method
that returns the container for the children. JFrame.getContentPane() isan example for such a
method. The value must be a String and specifies the name of a method that takes no arguments and
returnsa java.awt.Container.E.g.

beanDesc.setValue("containerDelegate", '"getContentPane");

layoutManager

-118 -

https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/package-summary.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/BeanInfo.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/BeanDescriptor.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/EventSetDescriptor.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/PropertyDescriptor.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/PropertyEditor.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/Customizer.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/FeatureDescriptor.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/BeanDescriptor.html

JFormDesigner 8.2 Documentation

Attribute Name Description

Allows the specification of a layout manager, which is used when adding the component to a form. If
specified, then JFormDesigner does not allow the selection of a layout manager. The value must be a
Class.E.g.

beanDesc.setValue("layoutManager", BorderlLayout.class);

persistenceDelegate Specifies an instance of a class, which extends java.beans.PersistenceDelegate, that can be used
to persist an instance of the bean. E.g.

beanDesc.setValue("persistenceDelegate", new MyBeanPersistenceDelegate());

PropertyDescriptor Attributes

Following attributes are supported in PropertyDescriptor:

Attribute Name

category

enumerationValues

extraPersistenceDelegates

imports

notMultiSelection

notNull

Description

Specifies the property category to which the property belongs. JFormDesigner adds the specified
category to the Properties view. The value mustbe a String.

propDesc.setValue("category", "My Properties");

Specifies a list of valid property values. The value must be an Object[] . For each property value,
the Object[] must contain three items:

® Name: A displayable name for the property value.
® Value: The actual property value.

® Java Initialization String: A Java code piece used when generating code.

propDesc.setValue("enumerationValues", new Object[] {
"horizontal", JSlider.HORIZONTAL, "JSlider.HORIZONTAL",
"vertical", JSlider.VERTICAL, "JS1lider.VERTICAL",
1

Specifies a list of persistence delegates for classes. The value must be an Object[] . For each
class, the Object[] must contain two items:

® (Class: The class for which the persistence delegate should be used.

® Persistence delegate: Instance of a class, which extends java.beans.
PersistenceDelegate, that should be used to persist an instance of the specified class.

Use the attribute "persistenceDelegate" (see below) to specify a persistence delegate for the
property value. Use this attribute to specify persistence delegates for classes that are referenced
by the property value. E.g. if a property value references classes MyClass1 and MyClass2:

propDesc.setValue("extraPersistenceDelegates", new Object[] {
MyClassl.class, new MyClasslPersistenceDelegate(),
MyClass2.class, new MyClass2PersistenceDelegate(),

s

Specifies one or more class names for which import statements should be generated by the Java
code generator. This is useful if you don't use full qualified class names in enumerationValues
or PropertyEditor.getJavalnitializationString() .The value mustbea String or
String[].E.g.

propDesc.setValue("imports", '"com.mycompany.MyConstants");
propDesc.setValue("imports", new String[] {
""com.mycompany .MyConstants",
""com.mycompany.MyExtendedConstants",

s

Specifies whether the property is not shown in the Properties view when multiple components are
selected. The value must be a Boolean. Default is false. E.g.

propDesc.setValue("notMultiSelection", Boolean.TRUE);

-119-

https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/PropertyDescriptor.html

JFormDesigner 8.2 Documentation

Attribute Name Description

Specifies that a property can not set to nu'll in the Properties view. If true, the Set Value to null
command is disabled. The value must be a Boolean. Default is false. E.g.

propDesc.setValue("notNull", Boolean.TRUE);

notRestoreDefault Specifies that a property value can not restored to the default in the Properties view. If true, the
Restore Default Value command is disabled. The value must be a Boolean . Default is false. E.g.

propDesc.setValue("notRestoreDefault", Boolean.TRUE);

persistenceDelegate Specifies an instance of a class, which extends java.beans.PersistenceDelegate, that can be
used to persist an instance of a property value. E.g.

propDesc.setValue("persistenceDelegate", new MyPropPersistenceDelegate());
preferredBinding Specifies that a property is a preferred binding property. If true, the property is added to the Bind
submenu (right-click on component) and highlighted in bold in the Binding dialog. The value must
be a Boolean. Default is false. E.g.

propDesc.setValue("preferredBinding", Boolean.TRUE);

readOnly Specifies that a property is read-only in the Properties view. The value must be a Boolean.
Default is false. E.g.

propDesc.setValue("readOnly", Boolean.TRUE);

transient Specifies that the property value should not persisted and no code should generated. The value
must be a Boolean. Default is false. E.g.

propDesc.setValue("transient", Boolean.TRUE);

variableDefault Specifies whether the default property value depends on other property values. The value must be
a Boolean. Default is false. E.g.

propDesc.setValue("variableDefault", Boolean.TRUE);

Design time

JavaBeans support the concept of "design"-mode, when JavaBeans are used in a GUI design tool, and "run"-mode,
when JavaBeans are used in an application.

You can use the method java.beans.Beans.isDesignTime() inyour JavaBean to determine whether it is
running in JFormDesigner or in your application.

Reload beans

JFormDesigner automatically reloads classes of custom JavaBeans when changed. So you can change the source
code of used custom JavaBeans, compile them in your IDE and use them in JFormDesigner immediately without
restarting.

You can also manually reload classes:

Stand-alone: Select View > Refresh Designer from the menu or press F5.

* IDE plug-ins: Click the Refresh Designer button (S)in the designer tool bar.
Refresh does following:

1. Create a new class loader for loading JavaBeans, Beaninfos and Icons.

2. Recreates the form in the active Design view.

Unsupported standard components

all AWT components

-120-

JFormDesigner 8.2 Documentation

13 Annotations

The @BeanInfo and @PropertyDesc annotations make it very easy to specifying BeanInfo information directly
in the custom component. It is no longer necessary to implement extra BeanInfo classes. This drastically reduces
time and code needed to create BeanInfo information.

When using the JFormDesigner annotations, you have to add the library jfd-annotations.jar (from
redistributables) to the build path of your project (necessary for the Java compiler). The documentation is in
jfd-annotations-javadoc.zip. Itis not necessary to distribute jfd-annotations.jar with your
application.

The APl documentation is also available here: doc.formdev.com/jfd-annotations/

@BeanlInfo

This annotation can be used to specify additional information for constructing a Beaninfo class and its
BeanDescriptor.

Example for specifying a description, an icon, property display names and flags, and property categories:

@BeanInfo(
description="My Bean",
icon="MyBean.gif",
properties={
@PropertyDesc(name="magnitude", displayName="magnitude (in %)", preferred=true)
@PropertyDesc(name="enabled", expert=true)

3
categories={
@Category(name="Sizes", properties={"preferredSize", "minimumSize", "maximumSize"}),
@Category(name="Colors", properties={"background", "foreground"}),

}

public class MyBean extends JCompoment { ... }
Example for a container component that has a content pane:

@BeanInfo(isContainer=true, containerDelegate="getContentPane")
public class MyPanel extends JPanel { ... }

@PropertyDesc
This annotation can be used to specify additional information for constructing a PropertyDescriptor.

This annotation may be used in a @BeanInfo annotation (see @BeanInfo.properties())or may be attached
to property getter or setter methods. If the getter method of a property is annotated, then the setter method of
the same property is not checked for this annotation.

Important: This annotation requires that the @BeanInfo annotation is specified for the bean class. Otherwise,
this annotation is ignored when specified at methods.

Example for attaching this annotation to a property getter method:

@PropertyDesc(displayName="magnitude (in %)'", preferred=true)
public int getMagnitude() {

return magnitude;
}

-121 -

https://doc.formdev.com/jfd-annotations/
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/BeanInfo.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/BeanDescriptor.html
https://docs.oracle.com/en/java/javase/12/docs/api/java.desktop/java/beans/PropertyDescriptor.html

JFormDesigner 8.2 Documentation

Example for specifying this annotation in a @BeanInfo annotation:

@BeanInfo(
properties={
@PropertyDesc(name="magnitude", displayName="magnitude (in %)", preferred=true)

public class MyBean extends JCompoment { ... }

@DesignCreate

This annotation can be used to mark a static method that should be invoked by JFormDesigner to create instances
of the bean, which are then used in the JFormDesigner Design view. The annotated method must be static, must
not have parameters and must return the instance of created bean.

Example for using this annotation to initialize the bean with test data for the Design view:

public class MyBean extends JCompoment {
@DesignCreate
private static MyBean designCreate() {
MyBean myBean = new MyBean();
myBean.setData(new SomeDummyDataForDesigning());
return myBean;

}
public MyBean() {
// ...

-122 -

JFormDesigner 8.2 Documentation

14 JGoodies Forms

JFormDesigner supports and uses software provided by JGoodies Karsten Lentzsch.

The JGoodies Forms framework support is very extensive. Not only the layout manager FormLayout is supported,
also some important helper classes are supported: Borders, ComponentFactory and FormSpecs (was
FormFactory).

JGoodies Forms ComponentFactory

The JGoodies Forms ComponentFactory (com.jgoodies.forms.factories) defines three factory methods, which
create components. You find these components in the palette category JGoodies.

® Label: Alabel with an optional mnemonic. The mnemonic and mnemonic index are defined by a single
ampersand (&). For example "&Save" or "Save &As". To use the ampersand itself duplicate it, for example
"Look&&Feel".

® Title:Alabel that uses the foreground color and font of a TitledBorder with an optional mnemonic.
The mnemonic and mnemonic index are defined by a single ampersand (&).

® Titled Separator:A labeled separator. Useful to separate paragraphs in a panel, which is often a better
choice thana TitledBorder.

text

-123 -

http://www.jgoodies.com/
https://doc.formdev.com/jgoodies-forms/com/jgoodies/forms/factories/Borders.html
https://doc.formdev.com/jgoodies-forms/com/jgoodies/forms/factories/ComponentFactory.html
https://doc.formdev.com/jgoodies-forms/com/jgoodies/forms/layout/FormSpecs.html

JFormDesigner 8.2 Documentation

15 Examples & Redistributables

A JFormDesigner installation includes example source code and redistributable files. Because JFormDesigner is
available in several editions and each IDE plug-in has its own requirements regarding plug-in directory structure
and installation location, the installation location of the examples and redistributables depends on the
JFormDesigner edition. The tables below list the locations for each JFormDesigner edition.

Examples

The examples.zip archive contains example source code and forms. See included README . html for details.

Edition

Stand-alone

Eclipse plug-in

Intelli) IDEA plug-in

NetBeans plug-in

Redistributables

Location

<jformdesigner-install>/examples.zip

macOS: <JFormDesigner.app>/examples.zip (right-click on JFormDesigner application and
select "Show Package Contents" from the context menu to see contents of <JFormDesigner.app>)

<eclipse-install>/features/com.jformdesigner_x.x.x/examples.zip or <eclipse-
install>/dropins/JFormDesigner-x.x-eclipse/features/ com.jformdesigner_x.x.x
/examples.zip

<user-home>/.IdealC<version>/config/plugins/JFormDesigner/examples.zip or
<intellij-idea-install>/plugins/JFormDesigner/examples.zip

macOS: <user-home>/Library/Application Support/IdeaIC<version>/JFormDesigner
/examples.zip

<netbeans-install>/jformdesigner/examples.zip

macOS: <NetBeans.app>/Contents/Resources/NetBeans/jformdesigner/examples.zip
(right-click on NetBeans application and select "Show Package Contents" from the context menu to
see contents of <NetBeans.app>)

The redist folder contains the JFormDesigner Annotations Library, the JFormDesigner Runtime Library and 3rd
party open source files (layout manager, beans binding, etc). See redist/README.html for information about

licenses.

Edition

Stand-alone

Eclipse plug-in

Intelli) IDEA plug-in

NetBeans plug-in

Location

<jformdesigner-install>/redist/

macOS: <JFormDesigner.app>/redist/ (right-click on JFormDesigner application and select
"Show Package Contents" from the context menu to see contents of <JFormDesigner.app>)

<eclipse-install>/plugins/com.jformdesigner.redist_x.x.x/ or <eclipse-install>
/dropins/JFormDesigner-x.x-eclipse/plugins/ com.jformdesigner.redist_x.x.x/

<user-home>/.IdealC<version>/config/plugins/JFormDesigner/redist/ or
<intellij-idea-install>/plugins/JFormDesigner/redist/

macOS: <user-home>/Library/Application Support/IdealC<version>/JFormDesigner
/redist/

<netbeans-install>/jformdesigner/redist/

macOS: <NetBeans.app>/Contents/Resources/NetBeans/jformdesigner/redist/ (right-
click on NetBeans application and select "Show Package Contents" from the context menu to see
contents of <NetBeans.app>)

124 -

	JFormDesigner
	Introduction
	User Interface
	Menus
	Toolbars
	Design View
	Headers
	In-place-editing
	Keyboard Navigation
	Menu Designer
	Column/Row Groups
	Button Groups
	JTabbedPane
	Events

	Palette
	Structure View
	Properties View
	Layout Manager Properties
	Layout Constraints Properties
	Client Properties
	Code Generation Properties
	Property Editors

	Bindings View
	Error Log View

	Localization
	Beans Binding (JSR 295)
	Projects
	Preferences
	IDE Integrations
	Eclipse plug-in
	IntelliJ IDEA plug-in
	NetBeans plug-in

	Layout Managers
	BorderLayout
	BoxLayout
	CardLayout
	FlowLayout
	FormLayout (JGoodies)
	GridBagLayout
	GridLayout
	GroupLayout (Free Design)
	HorizontalLayout (SwingX)
	IntelliJ IDEA GridLayout
	MigLayout
	null Layout
	TableLayout
	VerticalLayout (SwingX)

	Java Code Generator
	Nested Classes
	Code Templates

	Command Line Tool
	Runtime Library
	JavaBeans
	Annotations
	JGoodies Forms
	Examples & Redistributables

